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Studies of multimodal integration have relied to a large

extent on conflict situations, in which two sensory

modalities receive incongruent data concerning one

aspect of the source. Exposure to such situations pro-

duces immediate crossmodal biases as well as longer

lasting aftereffects, revealing recalibrations of data-to-

percept matches. In the natural environment, such

phenomena might be adaptive, by reducing the perturb-

ing effects of factors like noise or growth-induced

changes in receptor organs, and by enriching the per-

cept. However, experimental results generalize to real

life only when they reflect automatic perceptual pro-

cesses, and not response strategies adopted to satisfy

the particular demands of laboratory tasks. Here, we

focus on this issue and review ways of addressing it

that have been developed recently.

Research on perceptual processing, whether behavioural
or physiological, has generally considered one sense
modality (sight, hearing, touch, smell, etc) at a time. Yet,
most events in the natural environment generate stimu-
lation to several modalities. An explosion simultaneously
emits light, noise and heat, and experiencing all of these
together make for a richer percept than each individually;
a speaker produces facial movements in a predictable
temporal relationship to corresponding speech sounds and
experiencing both together can provide a more adequate
percept. Such availability of partially redundant data
about the same objects or events provides perceiving
systems, whether biological or artificial, with opportu-
nities for compensating for various modality-specific
disturbances.

Research for more than 100 years on multisensory
integration (MSI) has shown that animals and humans
alike effectively take advantage of these opportunities [1].
In this article, we shall briefly summarize the main
evidence from human behavioural work and discuss its
relevance for the central issue of ecological function. We
shall argue that to generalize to real life, experimental
findings must reflect genuine perceptual processes rather
than response strategies adopted to satisfy the specific
demands of particular laboratory tasks.

Experimental conflict situations

One major instrument of MSI research has been the
experimental conflict situation, in which two modalities
receive incongruent data regarding one particular aspect
of the environment. Contrary to a frequent misconception,
such conflicts occur not only in the laboratory, but also in
the natural environment, and artificial experimental
conflicts can be seen as simulations of natural ones.

Natural conflicts result from two main types of factors.
One is moment-to-moment variability, or noise, in either
impinging stimulation or subsequent processing. This
noise usually affects one modality specifically and thus
produces transient crossmodal incongruence. Combining
information across modalities can bring compensation for
these disturbances. The other source of natural incon-
gruence consists of longer lasting changes in bodily
parameters affecting perceptual input. The classic
example here is the effect of growth on inter-aural
distance, and consequently on time and intensity differ-
ences at the two ears as the basis of sound localization. In
situations of aural ambiguity, the seen location of the
sound’s source can be used to partially ‘recalibrate’ sound
processing in the correct direction. Other long-lasting
changes can result from sensory handicap, or from
spontaneous drift in the processing rules.

In the laboratory, two main reactions to intermodal
conflict have been demonstrated: ‘immediate effects’,
observed in presence of the conflicting data, and ‘after-
effects’, affecting responses to unimodal data following a
period of exposure. They correspond to the two types of
corrections – for transient noise and for longer-lasting
deviations – that we considered for natural conflicts.

Spatio-temporal conflicts: immediate effects

A prime example of an immediate effect is the apparent
attraction of a sound by a visual stimulus presented
simultaneously in a separate location [2–5]. It is also
called ‘the ventriloquist effect’, referring to the performing
ventriloquist, who speaks without visible lip movements
while agitating a puppet in synchrony with his speech. The
successful ventriloquist creates in his audience the illusion
that the words come from the puppet. The phenomenon
has been studied in the laboratory using a ‘selective
unimodal localization task’ [6,7]. Participants are
instructed to point towards sound bursts whilst ignoring
point flashes of light delivered synchronously at someCorresponding author: Beatrice De Gelder (b.degelder@uvt.nl).
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small distance. Pointing typically deviates towards the
(to-be-ignored) flashes. The reverse effect, auditory bias of
visual location, is much smaller, although sometimes
above chance. Even the visual bias of auditory location is
generally smaller than the objective distance between the
stimuli, showing that the interaction does not reduce, as
was sometimes believed, to a substitution of visual data
for the auditory data, and implies real integration of
information from the two modalities. In another task,
‘discordance detection’, subjects decide whether audio–
visual stimulus pairs come from a single location or from
separate ones [8–9]. A ‘single’ judgment indicates that the
sum of the two biases has brought the apparent distance
below some detection criterion.

Audio–visual biases depend crucially on synchroniz-
ation of the bimodal inputs [10–12]. This dependence
makes good functional sense. To play a useful role in the
normal environment, crossmodal interactions must be
applied mainly to multimodal inputs from a same source,
which generally arrive simultaneously.

Spatial biases have also been demonstrated for other
modality pairs: bias of proprioception by vision [13], touch
by vision [14], and audition by touch [15–17]. Another
recently demonstrated bias is the effect of a visual
distracter on the apparent direction of motion of a target
sound when the two stimuli are moving simultaneously in
the opposite direction [18,19]. A new line of study currently
focuses on audio–visual biases in the time dimension, or
‘temporal ventriloquism’ [20–22]. For example, the appa-
rent temporal separation between asynchronous sound
bursts and light flashes seemed shorter when these were
presented in the same location rather than in separate
ones [21]. It appeared also that, in this interaction,
audition played the stronger role [20,22]. This finding
brings new support for Welch’s ‘modality appropriateness
hypothesis’, which relates relative modality dominance to
the accuracy with which the task’s target dimension is
measured in each modality [5]. An innovative development
along a similar line has been the successful prediction of
modality dominance by a model based on a maximum
likelihood principle [23].

Identity biases

MSI and perceptual biases (which are only part of the MSI
picture) do not occur exclusively along spatio-temporal
dimensions, and can equally operate at the level of
recognition of stimulus identity. A well-known case is the
‘McGurk effect’ [24,25]. When a spoken syllable like /ba/ is
dubbed onto the visual presentation of a face articulating
an incompatible syllable (e.g. /ga/, pronounced, unlike /ba/,
without lip closure) subjects often report hearing a
compatible syllable (e.g. /da/). The effect requires a
minimum of crossmodal synchronization, in the same
way as ventriloquism [26–27].

MSI between non-linguistic inputs has been relatively
less studied. For example, categorization of musical
sounds as ‘bow’ or ‘pluck’ along a bow-to-pluck continuum
was biased by the sight of hands either bowing or plucking
a cello [28]. This result could reflect either genuine
perceptual interactions or post-perceptual decisions
based on familiarity with musical instruments sounds,

or both. Other recently reported examples are the effect of
an added sound on the interpretation of an ambiguous
sequence of visual motion [29], and a surprising visual
illusion induced by the presentation of incongruent
numbers of auditory beeps [30].

Finally, a new series of investigations has documented
mutual biases between visible and audible expressions of
emotion, providing evidence for an ‘emotional McGurk
effect’ [31–33]. For instance, faces from a continuum of
expressions (e.g. sad to happy) were presented simul-
taneously with a semantically neutral speech utterance
pronounced in an emotional tone corresponding to one
or other end-point of the face continuum (see Figure 1),
or conversely, utterances from an affective continuum,
together with faces from the end point [33]. The two pos-
sible biases, of facial expression judgment by voice tone, and
of voice tone judgment by facial expression, were obtained,
despite instructions to focus on the target modality.

Aftereffects

Aftereffects are behavioural modifications induced by
exposure to conflicting inputs. They have been studied
mainly for cases of spatial conflict, ventriloquism and
prismatically displaced vision of the subject’s own body
parts. This last situation was actually the focus of the first
systematic movement of research on multimodality in the

Figure 1. Emotional voices influence the categorization of facial expressions. Faces

from a happy-to-sad morphed continuum were presented either alone or in syn-

chrony with a voice pronouncing a semantically neutral sentence in a happy or a

sad tone, and the subjects were instructed to judge whether the face was sad or

happy, ignoring the voice. Nevertheless, the proportion of ‘sad’ judgments

increased with the sad voice and decreased with the happy voice. Redrawn from

[33].
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1960s (see [34,35] and review in [36]). Extension to the
ventriloquism situation was stimulated by theoretical
issues raised by this tradition in prismatic displacement
[2,3]. ‘Aftereffects of ventriloquism’ are typically studied
by asking subjects to point to unimodal sound or light
targets before and after a period of exposure to spatially
separate but simultaneous sounds and light flashes. Post-
exposure responses are generally shifted in the direction
occupied by the distracter during exposure [37–39].

The occurrence of aftereffects shows that exposure to
intermodal discrepancy ‘recalibrates’ sensory input-to-
percept relationships. Recalibration is probably the
mechanism through which the operation of the different
modalities are kept coordinated in the face of changes
resulting from spontaneous drift, growth or sensory
handicap [3,34,35].

An important question, first considered by Bedford [40],
is that of how specific the recalibration is to the particular
conditions of the exposure situation. Bedford found that
aftereffects of exposure to visual–proprioceptive conflict
in one location generalized to a wide range of testing
locations. More recently, Recanzone [39] reported that
visual spatial recalibration induced with tones at a
particular frequency did not generalize to frequencies
two octaves away. This result has interesting implications
concerning the mechanisms of sound localization, but was
not replicated in a more extensive recent study [41].

The processing-levels issue

Until recently, most data purporting to demonstrate MSI
consisted of voluntary responses of participants, such as
verbal judgments, setting stimulus values or pointing.
With such data, one is led to ask whether the observed
interactions originate in automatic, mandatory perceptual
processes, or in later decisional ones. This question has
often been asked at some stage in the development of many
areas of perception research, although convincing answers
have not always followed.

Human responses are relevant to the general issue of
intermodal coordination only if they reflect basic percep-
tual processes, rather than specific strategies adopted to
satisfy the demands of particular laboratory tasks. The
case of the selective-response paradigm, through which
immediate bias effects were often studied serves to
illustrate this point. The fact that biases occur in spite of
instructions to ignore the non-target stimuli has some-
times been taken as supporting evidence for their
automatic nature. The argument effectively suggests
that responses are to some degree mandatory, but it is
not a strong one. In fact, once discordance is detected
consciously, it is still up to the subject to decide what to do
with the experimenter’s instructions. Indeed, these
instructions can lead subjects to wonder why the distracter
items they are asked to ignore were presented at all.

To overcome these difficulties, several ways of avoiding
the contamination of MSI effects by post-perceptual factors
have been introduced recently.

Undetected discrepancies

One approach is to measure interactions with intermodal
discrepancies that are so small that participants have no

awareness of their existence. Such a situation can be
achieved using a modified psychophysical staircase
method that was developed by Bertelson and Aschersleben
[12] and used to demonstrate automaticity of the visual
bias of sound location (see Box 1). The crucial aspect of this
method is that the possibility of bias is examined at
moments when the occurrence of response reversals
demonstrates that the subject has become uncertain
concerning the direction of the crossmodal discordance.
The method has now also been applied to examine the
effects of reflexive attention to the visual distracter in
ventriloquism [42], a new bias of tactile location by
auditory distracters [15], and temporal ventriloquism [21].

Indirect methods

In an experiment with the traditional ‘cocktail party’
situation, Driver [43] had listeners repeat one of two word
sequences delivered simultaneously via a single loudspea-
ker. The target sequence was also presented as a video of
the talker’s face on a screen either close to the loudspeaker
or at a distance from it. Performance was significantly
better with the talker’s face on the screen separated from
the loudspeaker than on the proximal screen. Presumably,
in that condition the target items were attracted towards
the synchronously moving face, and this separated them
spatially from the (non-synchronous) non-target items, a
condition well known for facilitating selective listening. In
this elegant experiment, a visual bias of auditory location
was demonstrated indirectly through its effect in a non-
spatial task, and this could therefore not be explained by
any voluntary adjustment by the subject.

Several other applications of the indirect approach have
been reported recently [44–46]. One interesting example
concerns the visual bias of auditory motion direction [19].
This study took advantage of a contingent auditory motion
aftereffect [47], in which listening to sounds with a falling
pitch moving in one direction, alternating with sounds
with a rising pitch moving in the opposite direction,
resulted in the impression that stationary sounds moved
in one or the opposite direction, depending on whether
their pitch was rising or falling. This provides an auditory
analogue of the well-known McCullough effect in vision
[48]. Furthermore, adding a visual object (moving simul-
taneously with the sound in either the congruent or an
incongruent direction) significantly enhanced the auditory
aftereffect [19]. This result carries convincing proof of the
perceptual nature of the visual bias of auditory motion,
which earlier studies failed to provide [18].

Evidence from brain pathology

Patients who have lost the capacity to form conscious
representations of particular forms of sensory stimulation
(e.g. visual input) as a result of brain damage can
sometimes still process (visual) stimuli unknowingly.
Finding that sensory inputs of which a patient is not
aware can bias perception in other modalities can have
important implications for understanding the functional
locus of MSI.

We have examined the visual bias of auditory location in
cases of visual unilateral neglect, a condition character-
ized by an inability to attend to stimuli presented to one
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side of the visual field, usually the left field [49]. Subjects
were unable to detect bright light flashes delivered to
the left of a fixation point. But when instructed to point
to the location of auditory tones presented centrally
in synchrony with such flashes, their responses showed
small but significant attractions towards the neglected
left flashes (Figure 2). By contrast, fully detected flashes
to the right of fixation produced only erratic and non-
significant effects, presumably the result of varying
voluntary strategies.

Similar evidence about the effects of audiovisual
integration from brain damage is provided by recent
work on MSI of emotion (see Box 2). A patient with a face
recognition deficit (‘prosopagnosia’), and unable to identify
facial expressions, was asked to name the emotional tone
in which a spoken sentence was pronounced, a task she
could do without difficulty. When a face displaying an
incongruent expression was presented simultaneously
with an emotional tone of voice (for example, an angry

face together with a fearful tone of voice), her judgment
was biased in the direction of the unrecognized facial
distracter [50].

Results with similar implications have been obtained in
hemianopic patients with residual non-conscious vision.
These patients have lost awareness of stimuli from the
region of the visual field corresponding to the damaged
region of cortex, but can nevertheless perform above
chance on some indirect tasks based on such unrecognized
items [51]. Recent findings obtained with two cortically
blind patients indicated that a facial expression presented
to the blind visual field influenced how the emotion
expressed in a spoken sentence was processed [52].
Interestingly though, a fear-inspiring picture (e.g. a
snake) influenced the auditory response only when
presented in the intact field, suggesting that some multi-
sensory interactions involve mechanisms related to con-
scious vision whereas others do not. This clearly shows
that awareness of the stimuli does play a role in MSI.

Box 1. A modified psychophysical staircase method

On each trial, a train of three tone bursts is delivered in an apparent

location controlled through time difference stereophony (time interval

between presentations on two separate loudspeakers) and the

participant indicates by pressing one of two keys whether the tones

came from left or right of the display’s centre (Figure Ia). Sound

locations are chosen according to two randomly mixed staircases, one

starting far to the left and the other far to the right (Figure Ib). When the

‘left’ response is given, the following sound targets on the same

staircase are moved one step to the right, and vice versa after a ‘right’

response. This procedure necessarily results in the two staircases

progressively converging towards the centre. Initially, the correct

response is provided repeatedly on each staircase, so that, except for

occasional mistakes, the convergence is monotonous. Then, at some

point, ‘response reversals’, that is, responses different from the

preceding one on the same staircase, begin to occur. From this point

on, the participant is uncertain regarding the location of the target

sound, so that no particular response strategy could be reliably

applied.

To examine the visual bias of apparent sound location, light flashes

were produced in a central location in synchrony with the sounds. In this

condition, reversals started occurring with the tones farther away from

centre than in a control condition with no flashes, showing that the

flashes effectively attracted the sounds. This attraction was observed at

a time when, given the occurrence of reversals, it could not possibly be

of voluntary origin. The effect entirely disappeared when flashes and

sounds were desynchronized.

Pooling locations for successive reversals, and not for successive

trials (as is more usual when using staircases) is essential for the crucial

purpose of this modified method, which is to isolate data recorded in the

uncertainty region as opposed to pre-uncertainty regions.

Figure I. Visual bias of perceived auditory location measured with psychophysical staircases. (a) Schema of experimental set-up. The subject indicates by pressing one

of two keys whether the sound appeared to come from left or right of centre. A light flash can be synchronized or desynchronized with the sound. (b) Examples of

explorations in control and experimental conditions. Abcissa: successive trials. Ordinate: sound location perceived by subject, in number of phase difference steps; up

? left; down ? right. After a ‘left’ response, the actual sound location is moved one step to the right for next trial, and vice versa after a ‘right ‘response. In a typical

exploration in the control (no flash, NF) condition, each staircase moves monotonously towards the centre, until response reversals (marked by filled symbols) begin

to occur. The exploration stops when 10 reversals have occurred on each staircase. In the synchronized flash (SF) condition, an exploration by same subject shows

reversals beginning to occur when the staircases are further apart than in the no flash condition. Redrawn from [12].
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Future directions

Should theories of MSI proceed in a bottom-up fashion in
the hope that understanding simple cue combinations
yields the recipe for understanding complex naturalistic
situations? The old debate on whether audio–visual MSI
required realistic situations was closed with the consensus
that situations using minimalist stimulus pairs using
simple cues were all that was needed to elicit robust MSI
[1]. This suggested that ecological validity did not hinge on
the use of naturalistic stimuli. In line with animal studies,

human MSI research is now also beginning to explore
naturalistic situations, including communicative sig-
nals exchanged by biological organisms whose brains
evolved for dealing with such environments. The
challenge for the near future will be to design
perceptual experiments simulating MSI in naturalistic
environments. Sophisticated modelling of MSI will go
hand-in-hand with much needed progress in theory.
We will end by briefly listing what we see as some
important steps along that path.

Box 2. The neural basis of audiovisual perception of emotion

Functional imaging studies in humans have started to identify some of

the brain regions involved in MSI. At present generalizations are still

difficult because the phenomena considered are quite diverse. Audio–

visual situations studied include arbitrarily associated minimalist pairs,

audio–visual speech [55,56] and audio–visual emotion [57]. The choice

of control conditions and tasks is also rather diverse. Sometimes

arbitrary audio–visual pairs have been used as control conditions for

audio–visual speech [58], whereas other studies used meaningless

grimaces [59]. Significant diversity also results from ways in which MSI

is operationalized. One approach is to compare unimodal and bimodal

situations. Inspired by animal electrophysiology [60], MSI effects in

brain imaging studies have been quantified as response enhancement

and applied to the MSI of speech [61]. By contrast, EEG and MEG studies

tend to find suppressive effects [56]. Another approach is to compare

bimodal congruent with bimodal incongruent scenarios, in which case

crossmodal inhibition is observed for the incongruent case [52].

Depending on the situation studied, specific hypotheses can be

formulated about the underlying mechanism. In an fMRI study, a

crucial component of the mechanism for crossmodal binding in the case

of fearful face and voice pairs was found in the amygdala [57]. Subjects

heard auditory fragments paired with either a congruent or an

incongruent facial expression (happiness or fear) and subjects were

asked to judge the emotion from the face. When fearful faces were

accompanied by short sentence fragments spoken in a fearful tone of

voice an increase in activation was observed in brain regions that

included the amygdala and the fusiform gyrus (Figure I), suggesting

an important role of the amygdala for binding of face and voice

expressions.

An intriguing possibility is that presentation in one modality activates

areas typically associated with stimulation in the other modality. Thus

activation of auditory cortex has been observed for visual speech and

visual cortex activation was observed for emotional voices [62]. An

interesting topic for future research is whether this pattern of a ‘crossed

activation by implicit association’ obtains specifically for naturalistic

pairs where co-occurrence of the two components is the norm, as is the

case for situations like audio–visual speech and emotion.

Figure I. Crossmodal binding of visual and auditory stimuli in the fusiform gyrus. Subjects listened to a sentence spoken in either a happy or fearful tone of voice, and

at the same time were presented with either a happy or fearful face. (a) fMRI activation in the right fusiform gyrus (yellow), shown in transverse and sagittal views. The

level of fusiform gyrus activation depended on the congruence or incongruence of the stimuli. The largest increase was observed when a fearful voice was presented

with a fearful face (fF condition), compared with the other conditions: hH, happy voice with happy face; fH, fearful voice with happy face; hF, happy voice with fearful

face. (b) Plots of the fitted haemodynamic responses in fusiform gyrus in the four experimantal conditions. (c) Estimates of the responses at the voxel of maximum

significance. Modified from [57].
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A framework for classifying multisensory signals

With the research field expanding, what is needed most
urgently is a classification of different kinds of MSI
situations. Traditionally, quantification and modelling of
simple cue-redundancy-based MSI has attracted most of
the attention. The adaptive function of MSI includes
response enhancement, taking advantage of redundancy
(still the most studied case), but also contributing to
enrichment of the percept (e.g. the combination of colour
and smell stimulate appetite more than each alone).
Moreover, different cases of cue redundancy must be
distinguished even for spatio–temporally paired cues,
because effects of cue pairing can be additive, cumulative,
inhibitory or lead to an emergent and novel percept. For
example, the McGurk effect in fact consists of two quite
different effects because some audio–visual speech com-
binations give rise to blends (with combining components
still intact, visual /ba/ and auditory /da/ is perceived as

/abda/) and others to fusions (visual /ga/ and auditory /ba/
is perceived as /da/, an emergent percept), amounting to a
qualitative difference between the two situations. More
generally, cases of MSI-based enrichment of percepts or of
emergent properties may require a different approach
from cases of cue redundancy.

Another aspect of MSI that should be part of any
classification concerns the kind of relationship that exists
between the members of a pair. ‘Arbitrary’ pairs are those
created for the purpose of an experiment (for example, a
low-frequency tone paired with a square and a high-
frequency tone with a rectangle). By contrast, naturalistic
pairs consist of components that tend to co-occur in natural
environments. It might be that ignoring these distinctions
for the sake of an abstract theory and a generalized
method is one way of making progress, but the alternative
is equally worth considering. In the latter case, only
detailed descriptions of each specific MSI situation will tell
us how best to approach each particular case.

MSI and neural mechanisms

How does integration at the perceptual level relate to
underlying neural mechanisms? A classification of types of
MSI will be very useful for future hypotheses about
underlying mechanisms and how best to model and
measure these. At present MSI is measured variously at
the cellular level, at the cell population level, and at the
whole brain level. Neurophysiological mechanisms pro-
posed for MSI include summation, suppression, inhibition
and neural synchrony. Although all of these belong under
the umbrella of integration, each means something specific
only within the context of the neurophysiological method
used. Will rules of translation be found that bridge all
these levels and combine spatial with temporal infor-
mation, the cellular level with the functional neuroanat-
omy? Perhaps, but the specific MSI situation (redundancy
or enrichment, cue summation or inhibition, minimalist or
naturalistic pairs) is likely to be an important factor in
formulating specific predictions and applying the best
methods. Thus, a classification of MSI scenarios will
provide a roadmap for research by indicating what type of
effects to expect and which method and baseline to choose.

MSI and consciousness

The notion of separate and qualitatively different routes
for conscious and non-conscious processing is now actively
investigated in visual perception (e.g. [51]). A similar
distinction might be needed for other sensory systems.
However, the relationship between MSI and consciousness
has not yet received much attention. With different
systems for conscious and non-conscious visual perception,
MSI might well be different depending on whether or not
the visual component of a stimulus pair is perceived
consciously. As noted already, damage to primary visual
cortex offers unique opportunities to investigate MSI in
conditions of non-conscious awareness. In a recent fMRI
study (following on from [52]) we investigated MSI for
combinations of emotional voices paired with either face
expressions or emotional scenes of which the subject
was unaware. Preliminary results suggest that stimulus

Figure 2. Visual bias of perceived sound location in patients with severe unilateral

neglect. (a) Experimental set-up: the subject points with hidden hand to apparent

location of a tone delivered centrally, in synchrony with presentation of a small

digit (in centre of screen), either alone or together with a bright white square to

left, right or both sides of digit. The subject also reports the digit and squares

(‘left’, ‘right’, ‘bilateral’ or ‘none’). The left square is practically never reported,

probably because of extinction caused by attention to central digit. (b) Results of

five neglect patients, showing visual bias of sound location (mean pointed location

on trials with each visual display minus no-square trials). Positive signifies a bias

to the right. There is a small but systematic attraction towards the undetected left

square. Effects of the detected right square on both ‘right’ and ‘bilateral’ trials

were erratic (and therefore non-significant), probably reflecting individual differ-

ences in post-perceptual strategies. Healthy subjects tested in the same situation

had significant biases towards both left and right distracters, and none with bilat-

eral ones. Redrawn from [49].
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awareness is an important factor for whether MSI is
observed, and for which neural structures are involved.

MSI and qualia

Sensations have qualitative aspects, which contribute to
making the representations they convey unique, as high-
lighted recently for example, in research on synaesthesia.
An important difference between MSI in situations of
redundancy versus situations of enrichment is that in the
latter the quality of the percept is sometimes modified. A
future challenge is to integrate these qualitative aspects,
including their reward function, into more complete
models of MSI.
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