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We report on a series of experiments with simple recurrent networks (SRNs)
solving phoneme prediction in continuous phonemic data. The purpose of the
experiments is to investigate whether the network output could function as a
source for syllable boundary detection. We show that this is possible, using a
generalisation of the network resembling the linguistic sonority principle. We
argue that the primary generalisation of the network, that is, the fact that
sonority varies in a hat-shaped way across phonemic strings, ending and
starting at syllable boundaries, is an indication that sonority might be a major
cue in discovering the essential building bricks of language when confronted
with unsegmented running speech. The segment which is most directly related
to sonority patterns, the syllable, has received considerable attention in
psycholinguistics as being an element of natural language that is easily grasped
by language learners. The phoneme prediction network presents a simulation
of the necessary bootstrap to arrive at the discovery of syllabic segmentation in
unsegmented speech, which can be used as a basis for the segmentation of
larger structures like words.
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194 VROOMEN, VAN DEN BOSCH, DE GELDER

INTRODUCTION
This article examines a possible solution to the problem of segmentation of
continuous speech. By means of a series of simulations, we investigate
whether a connectionist network can provide useful cues for the
segmentation of a continuous phonemic speech sequence into meaningful
units.

The task of a listener is to map the sound of an utterance to meaning. In
many languages, speakers do not provide reliable acoustic cues to the
boundaries of words. Nevertheless, listeners have to divide the speech signal
into units which can be mapped to sublexical or lexical entries. Several
proposals have been formulated to partition and align the speech signal in a
way so that only a relatively small set of lexical candidates is entertained.
Probably the best known model of spoken word recognition is Marslen-
Wilson’s (1987) Cohort model. In Cohort, the initial part of the word
activates a cohort of lexical hypotheses. Words are dropped out from the
cohort until one word becomes unique. At that stage, the word is recognised.
This activation/selection process works well with long words presented in
isolation, but Cohort does not provide a solution to segmentation of
continuous speech. The model presupposes that the boundaries of a word
are known, because that is the place were activation starts to build up.
However, the model will fail if more than two words have to be recognised of
which the �rst one is not uniquely speci�ed at its offset. This is most likely to
occur with short words. In that case, the �rst word will not be recognised
because other candidates are still entertained, and, consequently, the
boundary of the second word will be mislocated. For that reason, Cohort
would run into serious problems if it were applied to speech recognition of
concatenated words.

More attention to the segmentation problem has been devoted in the
TRACE model of McClelland and Elman (1986). Segmentation in TRACE
is accomplished at the lexical level via the interactive activation and
inhibition of competing word candidates. The model is, in general, successful
in identifying a word boundary between two concatenated words, but
whether it can deal with more than two words is at present unclear (for a
detailed discussion, see Frauenfelder & Peeters, 1990).

The metrical segmentation strategy (MSS), as advanced by Cutler and
Norris (1988), deals more speci�cally with continuous speech segmentation.
The idea is that listeners exploit the lexical statistics of the language. For
English, these statistics are such that content words are likely to begin with
strong syllables. According to the MSS, listeners exploit these statistics by
segmenting the speech signal whenever a metrical strong syllable is
encountered. Generally speaking, the MSS assigns the rhythmic unit of a
language a special status as segmentation unit. For English, this unit is
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DISCOVERING SYLLABLES IN SPEECH 195

stress-based, but there is also evidence that for a syllable-timed language like
French, it is the syllable that acts as a segmentation unit. An empirical
demonstration of the latter was found by Mehler, Dommergues,
Frauenfelder, and Segui (1981). They observed that French subjects
responded faster in a segment-monitoring when the target matched exactly
the syllable of a word, rather than when it comprised more or less of the
syllable. In a stress-timed language such as Dutch, there is also evidence for a
role of the syllable in speech segmentation. For example, Vroomen and de
Gelder (1997) observed that words embedded at the end of other words
were temporarily activated if their onset matched the beginning of a syllable
(e.g. boos, meaning “angry”, as embedded in framboos, meaning
“raspberry”). In contrast, there was no activation of the embedded word if
its onset did not match the onset of a syllable, such as, for example, wijn
(meaning “wine”) as embedded in zwijn (meaning “swine”). Embedded
words were thus only activated if their onset matched the beginning of a
syllable.

From a developmental standpoint, however, all the previously mentioned
proposals are associated with serious problems. Segmentation hinges on
either lexical knowledge (Cohort and TRACE), or at least on knowledge
of the statistical properties of the lexicon (MSS). The newborn’s task,
however, is to build a lexicon from scratch, and it thus still needs to acquire
such a knowledge base. The models mentioned so far leave therefore
unexplained how the child, who does not know the words of the language,
segments the speech signal. On what basis does it start? If segmentation
indeed hinges on lexical knowledge, then one needs a kind of bootstrap
procedure.

One source of information in the speech signal that might serve as
a platform for acquiring a lexicon is the fact that there is always
syllabic structure in the sound sequences of the language. Words generally
start at the onset of a syllable (unless they are resyllabi�ed), and discovering
syllabic structure could therefore be of help for discovering word
boundaries. The question we address in this article is whether this syllabic
structure can indeed be discovered from a raw unsegmented sound
sequence.

Before outlining our question, some terminology needs to be de�ned
concerning the notion of syllable and sonority. For Dutch, Trommelen
(1981) proposes a tree-structure representation of the syllable, on the basis
of which we present the basic syllable tree representation for Dutch in Fig. 1.
This basic structure validates syllable structures such as V as in the �rst
syllable of adelaar (“eagle”), /a/; CV as in the monosyllabic word na
(“after”), /na/; CVC as in bed (“bed”), /bEt/; and CCV as in the �rst syllable
of breken (“to break”), /bre/. Alternatively, this basic structure
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196 VROOMEN, VAN DEN BOSCH, DE GELDER

1When a presented example is incorrect in the sense that it will not occur in the language (in
our case, Dutch), it is preceded by a superscript asterisk (*).

FIG. 1. Tree-structure representation of the Dutch syllable as proposed by Trommelen
(1981).

prohibits syllabic structures such as *C1, *CCC, or *VCCCCC. In Dutch, a
syllable consists of (a) an optional onset which can contain a sequence of up
to two consonants (C); (b) a nucleus, the only obligatory element of a Dutch
syllable, which contains a vowel (V) or a diphthong; and (c) a codawhich can
contain a sequence of up to two consonants. However, both three-consonant
onsets (as in /strat/, straat, “street”) and three-consonant codas (as in /bOrst/,
borst, “breast”) occur in Dutch. To account for this, metrical phonological
theory asserts that the initial /s/ in three-consonant onsets (usually starting
with /st/ or /sc/) and the �nal /s/ in three-consonant codas (usually ending
with /ts/) are regarded as extrametrical appendices (Halle & Vergnaud,
1980; Trommelen, 1981). The reason for this apparently complex solution to
assume extrametrical phonemes rather than just assuming three optional
consonants in both the onset and the coda is rooted in the assumption of the
sonority principle.

We adopt the notion of sonority from Selkirk’s (1984) de�nition of the
sonority principle (SP) (but see also Kiparski, 1979, for a similar account).
The SP states that within a syllable, sonority starts low at the onset, increases
towards a peak value at the nucleus position (hence the name peak which is
sometimes used as an alternative for nucleus in the literature), and gradually
decreases along the coda until the end of the syllable. The concept of
sonority, though, is not well-de�ned. In speech-acoustical terminology,
sonority is referred to as the ratio of the volume and the effort, but it is also
referred to as the degree of openness of the vocal tract (Selkirk, 1984).
Measuring this openness during the pronunciation of phonemes by a large
number of speakers renders average sonority values per phoneme. When
referring to sonority as an phonemic feature, however, it is often taken to be
a binary or ternary value (e.g. low, mid, and high sonority). As a working
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DISCOVERING SYLLABLES IN SPEECH 197

TABLE 1
Sonority Value Assignments to 10 Classes of Phoneme

Class description Phonemes Sonority value

a-vowels a, a:, A 1.0
e/o-vowels e:, E, o, o:, O, O:, Ei, Ou, ou 0.9
i/u-vowels i, i:, K, K:, 

`
K, y, y:, u, u:, U, U:, œy, @ 0.8

ö and r-sounds ö, ö:, r 0.7
semi-vocals, laterals l, w, h, j 0.6
nasals m, n, Î, "m, "n 0.5
voiced fricatives z, Z, v 0.4
voiceless fricatives s, S, f, å, c 0.3
voiced stop b, d, g 0.2
voiceless stop p, t, c, k 0.1

de�nition, we adopt Selkirk’s (1984) proposal. Here, the sonority scale is a
compromise of both opinions, by grouping the existing set of phonemes of
English into 10 discrete classes. These classes are assigned sonority values
between 0.1 (representing voiceless stops) and 1.0 (representing /a/-like
vowels), with steps of 0.1. In Table 1 the 10 classes are listed with a short
description, the phonemes that occur in our data set and belong to one class,
and the sonority value assigned to that class. In grouping the phonemes in
our data set into Selkirk’s (1984) classi�cation of the sonority of phonemes,
we have transferred a classi�cation that was originally illustrated to divide
English phonemes to Dutch. None the less, the classes are claimed to be at
least fairly universal for all languages. Moreover, Dutch phonology is
relatively close to English phonology. We therefore take Table 1 to provide
a workable explication of Selkirk’s (1984) metric for our data.

As set out earlier, metrical phonology has provided the assumption that a
syllable has a universal structure that can be de�ned accurately and easily as
in the tree-structure template of Fig. 1. Moreover, there are restrictions in
the adjacency of vowels and consonants within a syllable: The phonotactics
of Dutch determine, for instance, that /br/ is a valid consonant couple that
may occur in an onset, but that */kp/ can neither be a valid onset nor a valid
coda. These phonotactics re�ect both the SP (e.g. in an onset, a consonant
with a high sonority cannot precede a consonant with a low sonority, as in
*/rbal/, or vice versa in a coda, as in */bEgr/), as well as more language-
speci�c constraints relating to the articulatory restrictions of the language
(e.g. in Dutch, onsets such as /tz/ or /Sl/ and codas such as /sk/ or /z/ only occur
in some rare loan words). From these within-syllable phonotactic
constraints, it can be concluded that there is more statistical regularity within
than across syllables.

At �rst sight, it may seem reasonable that a language learner can pick up
the distributional probabilities of segments the language is made up. Their
speci�c co-occurrence may then serve as the basis from which the syllable is
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198 VROOMEN, VAN DEN BOSCH, DE GELDER

discovered. Moreover, the same co-occurrence learning principle could be
applied to discover individual words. That is, words may be discovered
because they are made up of a �xed sequence of syllables. Analogous to the
discovery of intra-syllabic phonotactics, the speci�c co-occurrence and
distributional properties of syllables may then be the bases from which
words are discovered. The general idea is thus that a unit (be it syllables,
words, or even idioms or syntactic structures) can be discovered from the
distributional probability of its segments. In the case of syllables, it can be
argued that if a large set of possible phonemes can follow a string of
phonemes, then it is likely that the end of the string marks the end of a
syllable; if few phonemes can follow the string, it is likely that it does not
mark the end of a syllable, because intra-syllabic phonotactics constrain the
number of possible phonemic continuations.

At present, there is indeed some empirical evidence that listeners use
these kind of distributional cues in speech segmentation. For example,
Saffran, Newport, and Aslin (1996) presented adults with synthetic speech in
which the distributional probabilities between syllables were the only cues
for “words” (the language consisted of six trisyllabic pseudowords like
babupu, bupada, dutaba, etc). There were thus no prosodic cues like pauses
or pitch contours in the synthesised speech sample that might have helped
listeners to segment the string. Nevertheless, adults could recognise the
individual words, even though these words were never presented in isolation
(see also Vroomen, Tuomainen, & de Gelder, in press). Even more
surprising is that eight-month-olds could compute from two minutes of
speech the probability that certain syllables appear in sequence, and this
allowed them to predict where one word ends and the next begins (Saffran,
Aslin, & Newport, 1996). In a similar vein, Jusczyk, Luce, and Luce (1994)
showed that infants are sensitive to the frequency with which certain
phonetic patterns occur in the language. They used a list of monosyllabic
items with frequent and infrequent phonetic patterns, and they observed
that nine-month-old infants preferred to listen to the high-frequency list.
These studies thus show that listeners are sensitive to co-occurrence of
sounds and it suggests that listeners can learn larger elements (in this case
words) from the transitional probabilities of their segments (see also
Jusczyk, 1997).

In the present study, we tried to formalise a procedure that discovers the
correlation existing between co-occurring segments. Moreover, we tried to
explore whether this knowledge could be used as a simple segmentation
device for syllables. As a �rst approximation, we trained a recurrent network
to predict the next phoneme in a concatenated string of transcribed
read-aloud words in a text. The similarity between the task of such a network
and the language learner is that both “hear” words that have an internal
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DISCOVERING SYLLABLES IN SPEECH 199

structure, while at the same time they do not have access to a lexicon. The
issue is what kind of generalisations a network discovers from these
regularities. Can this knowledge be used to acquire new words, and does it
help to appreciate how the adult listener accomplishes speech
segmentation?

This question was previously addressed by Cairns, Shillcock, Chater, and
Levy (1997). They trained a recurrent network trained to predict phonemes
on the basis of a large corpus of spoken text. One �nding of Cairns et al.,
given the assumption that prediction errors are correlated with
segmentational boundaries in the speech stream, was that the prediction
error of the trained network tends to correlate more with syllable
boundaries before strong syllables and content words (which is what the
MSS points to as the major source of information for segmentation in
English; Cutler & Norris, 1988) than with syllable boundaries before weak
syllables and function words. In the present simulations, we extend the work
of Cairns et al., this time using a different language (Dutch instead of
English), and try to provide an in-depth analysis of the knowledge the
network has acquired. The task we used was phoneme prediction because it
was thought to be a task in which segmental generalisations can be picked up
by the network from the input, without explicitly biasing the network via
supervised learning on a segmentation task. Our primary interest lies in the
automatically emerging properties of phoneme-prediction networks, rather
than in their actual capability to predict the next phoneme in a string of
phonemes.

EXPERIMENTS
In this section we de�ne the phoneme-prediction task and introduce our
experimental setup, namely we give a description of the data, the learning
algorithm and the network topology. We then provide a description of the
three analyses on the output of the trained networks, of which the results are
given in the following section.

Learning the Phoneme-prediction Task
The phoneme-prediction task is de�ned as follows: Given a certain sequence
of phonemes in connected speech, what is the identity of the next phoneme?
The next paragraphs sum up our considerations on the topics of topology
of the connectionist network, pattern presentation, data selection,
and phoneme encoding. We furthermore provide an analysis of the task in
which we express some expectations and hypotheses concerning the
experiments.
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200 VROOMEN, VAN DEN BOSCH, DE GELDER

Network Topology and Pattern Presentation

Various arti�cial neural network learning algorithms and topologies have
been proposed for temporal sequence processing (for an overview, see
Mozer, 1994). For instance, McClelland and Elman’s (1986) TRACE model
of word recognition implements a tapped delay line model, representing
memory in the form of explicitly stored time slices. Also relevant is the work
of Elman and Zipser (1988), who implement a tapped delay line model of
memory in a feed-forward back-propagation network, trained on
recognising and labelling phonemes when presented with a sequence of
speech signal samples.

A type of topology in which copies of the complete network rather than
delayed input time slices are memorised, is back-propagation through time
(BPTT) (Williams & Zipser, 1990). Doutriaux and Zipser (1990)
demonstrate its use in a series of simulations in which they train a BPTT
network on predicting speech spectogram time slices on the basis of previous
speech spectogram time slices. They demonstrate that sudden changes in
hidden layer activity over time correlate with phonemic boundaries, that is,
that the network has captured a generalisation different from the one it was
trained to capture.

An interesting alternative to explicitly represented memory slices are
simple recurrent networks (SRNs) (Elman, 1990), in which the
representation of memory in itself is learned by the network. In its most
common form, an SRN consists of a multilayer feed-forward network
(usually with three layers: Input, hidden, and output layers; the input and
hidden layers are fully connected, as are the hidden and output layers) with
an added context layer, fully connected to the hidden layer. After each
pattern presentation, the activity pattern of the hidden units is copied to the
context layer, so that at the following pattern presentation, the hidden layer
is confronted not only with the new input pattern activations, but also with
its own contents at the time of the previous pattern presentation. Elman
(1990) has demonstrated that SRNs are indeed able to perform temporal
sequence processing, and, more speci�cally, prediction. Furthermore,
Elman showed that the representations developed in the hidden layer
sometimes re�ect interesting facts about the task being learned.

For our simulations, we implemented a three-layer SRN. Given a training
sequence of phonemes S (without any explicit syllable markers), the input
layer of our network encodes phoneme Si, and the output layer is trained to
represent phoneme Si1 1, that is, the next phoneme in the sequence. The
assumption is that as it is necessary to store a certain unknown number of
phonemes in memory, the process of memory learning typical for SRN
networks will learn to do so automatically. Depriving an SRN of virtually all
information that would be presented when using explicit context (i.e. time
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DISCOVERING SYLLABLES IN SPEECH 201

slices encoding a �xed number of previous phonemes) forces it to learn and
represent just those pieces of contextual knowledge needed to solve the task.
This knowledge might well be of a higher order or structure than just
remembering (fading traces of) phonemes.

Data Selection

The data used in our experiments is the transcription of the �rst 11 pages
of the novel De Avonden by Dutch writer Gerard Reve (1987), being read
aloud. This data was introduced earlier in work on a replication of NETtalk
(Sejnowski & Rosenberg 1987) using Dutch data, reported in Weijters and
Hoppenbrouwers (1990). As did Weijters and Hoppenbrouwers (1990), we
divided the data into a �xed training set containing the �rst 10 pages of the
novel (4040 words, 14,955 phonemes) and a �xed test set containing the 11th
page (457 words, 1616 phonemes). The training and test set thus contain
sequences of phonemes (54 different phonemes occur in the data)
representing connected speech without prosodic markers. This means that
the individual words in the text were not pronounced in isolation, but were
read aloud naturally, leading to many cross-word effects such as voicing,
devoicing, and deletion of phonemes at the �nal and initial positions of
words. For example, the end of the �rst sentence of the novel reads “Frits van
Egters ontwaakte”. (“. . . Frits van Egters awoke.”). The transcription of this
part of the sentence is /. . . fr tsfanEct@rzOntwakt@/. Voicing has occurred in
the s of Egters, which in isolation would be pronounced as /Ect@rs/; the /s/ is
voiced because of the �rst vowel of the adjacent word ontwaakte, and
realised as a /z/ in pronunciation. Devoicing has occurred with the v of van,
pronounced /vAn/ in isolation; carrying over the devoiced feature of the �nal
/s/ of the word Frits— /fr ts/, the v is realised as an /f/. An example of
phoneme deletion can be found in the transcription of the same �rst page, on
which the pronunciation of the two consecutive words ogenblik kwam (“a
while came”) leads to a deletion of one of the two adjacent /k/s in the
pronunciation /oc@mbl kwAm/.

We added syllable markers to the testing material by hand, for use with
experimental output analyses described in a later part of this section. We
calculated the occurrences of different syllabic structures (e.g. CV, CVC,
etc.) in our test set. Table 2 lists the numbers and percentages of syllabic
structures occurring in the testing material.

Phoneme Encoding

From Hoppenbrouwers and Hoppenbrouwers (1987) we derived a
feature coding of Dutch phonemes discerning between 22 different features.
We encoded these 22 features directly in both input and target patterns by
setting the activations of units representing present features to 1.0, and
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202 VROOMEN, VAN DEN BOSCH, DE GELDER

TABLE 2
Occurrences of Syllable Structures in the Test Set

Structure No. of syllables % syllables

CV 277 45.0
CVC 208 33.9
VC 27 4.4
CCV 25 4.1
CVCC 24 3.9
CCVC 22 3.6
V 17 2.8
CCVCC 11 1.8
VCC 2 0.3
CCCV 1 0.2

setting the activations of units representing absent features to 0.0. Taking
Hoppenbrouwers and Hoppenbrouwers’ phonemic features to represent an
adequate and accurate feature set for Dutch, our feature encoding can be
seen as an adequate coverage of Dutch phoneme space. We are thus
avoiding any direct encoding of phonemes in input and output; when we say
our SRN encodes phonemes in its input and output layer, in fact the SRN is
encoding 22 articulatory features, of which none uniquely de�nes one single
phoneme. Analogously, when we say the network predicts a phoneme, it
actually predicts a set of 22 articulatory features that may not even be
identical to one of the 54 phoneme encodings in our data. In those cases, we
decode the output of the network to the phoneme that is the closest (i.e. has
the smallest Euclidean distance) in articulatory feature space to the actual
output.

Task Analysis

Phoneme prediction is a hard problem for any symbolic or subsymbolic
learning system. Any such system confronted with a natural training set of
concatenated phonemic strings (irrespective of the language) is faced with a
multitude of possible outcomes. This high complexity of phoneme
prediction stems from the fact that multiple levels of knowledge are needed
to predict the next phoneme after a sequence of phonemes. This knowledge
can be divided into four categories.

1. Phonotactic knowledge, needed to prohibit certain combinations of
phonemes within syllables such as, in Dutch, */tl/, */ff/, and validate
other combinations such as /st/, /la/, and /be/.
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DISCOVERING SYLLABLES IN SPEECH 203

2. Syllabic knowledge, that is, knowledge about the universal structure of
syllables (cf. Fig. 1), and/or about (standard) syllable sonority patterns,
re�ected in the sonority principle (Selkirk, 1984), which in its turn
determines a major part of the phonotactics.

3. Morphological knowledge, needed to mark the ends and beginnings of
morphemes. In Dutch, compounding of noun and verb stems is a highly
productive phenomenon. Numerous cases can be found where mor-
phological boundaries con�ict with phonological principles like the
maximal onset principle (MOP; consider for example the Dutch words
groe-nig (“greenish”), where the suf�x -ig does not interfere with the
MOP, and the word groen-achtig (“green-like”), where the suf�x
-achtig belongs to a class of af�xes that always overrules the MOP).
This might be too much information to be represented as a whole by a
network of the type we use. The network may however be triggered to
expect at some points in the speech stream certain highly frequently
occurring in�ectional morphemes, such as the nominalisation af�x -ing
(realised as / Î/).

4. Syntactic and semantic knowledge. Although a full linguistic analysis of
the speech stream would need both a syntactic and a semantic analysis,
these levels of knowledge appear to be far beyond the reach of a
three-layer SRN of the type we use.

In sum, it can be expected that the phoneme-prediction task will be
accomplished poorly by an SRN trained on the task. This is not the point
where analysis stops. An SRN trained with back-propagation learning
(Rumelhart, Hinton, & Williams, 1986) always tries to minimise errors by
continuously trying to �nd increasingly subtle ways of discovering
regularities, subregularities, and exceptions, up to the point where error
converges. When the error converges early and at a high level, the network
may have only been able to discover very general regularities. However,
these regularities may still be interesting, as they re�ect inherent general
properties of the data. One can posit a number of expectations on major
generalisations that a network trained on phoneme prediction will make,
amounting to three general hypotheses.

1. The network will discover certain phonotactic constraints generally
obeyed in combinations of phonemes. This knowledge might help
limiting the size of the set of possible successors when a phoneme is
being presented in the input layer. The notion of phonotactics should
in this case not be constrained to limitations on the adjacency of two
phonemes, but to the possibility of occurrence of a phoneme after a
sequence of phonemes.
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204 VROOMEN, VAN DEN BOSCH, DE GELDER

2. The network will discover structural syllabic regularities. One might
expect that the network will discover a regularity that is a “soft”
version of the sonority principle (SP; Selkirk, 1984), that is within a
syllable, sonority starts low at the onset, raises towards a peak at
nucleus position, and gradually decreases during the coda until the end
of the syllable, representing a hat-shaped graph. This principle bases
itself more or less on the de�nition of sonority, of which we have
adopted one in the Introduction.

3. The data used for training might contain (sequences of) words
occurring more than once in the text; furthermore, it may contain
certain frequently occurring af�xes in morphologically complex words.
Both features of the text may prompt the network to pick up on these
extra-syllabic lexical and morphological regularities.

The discovery of certain phonotactics and the SP, mentioned in
hypotheses 1 and 2, would help minimise prediction error if the syllabic
structures in the data were of constant size and type (e.g. CV). Yet, in the
case of our data set containing natural running speech, additional dif�culties
for predicting the next phoneme are the irregularly situated boundaries
between syllables, morphemes, and especially words. At these boundaries.
practically any phoneme can be expected. Consequently. when an SRN has
discovered phonotactics and the SP, it will be able successfully to apply these
generalisations only within the smallest phonotactically coherent phonemic
groups, namely syllables. Predicting phonemes within a syllable should be
increasingly easy going from the beginning of the syllable to the end, since
the remembered left context becomes more coherent as more phonemes
belonging to the same syllable are presented and remembered. This can be
visualised by a sawtooth-like error graph, peaking at syllable onsets and
gradually decreasing, until the next syllable begins and a new peak emerges.
Error in this respect should be de�ned in terms of the distance between the
output phoneme and the desired phoneme, for example, Euclidean distance
in phonemic-feature space. Ideally, the error graph computed on the basis of
the SRN output would consist of sequences of these sawtooths.

This error graph can then be used as an input source for a syllable
boundary detector. The accuracy of this boundary detector can be tested by
counting coinciding error peaks and real syllable boundaries. When this
score turns out to be signi�cantly larger than an averaged random baseline
score, the network proves its usefulness on a task different from the one it
was trained on. When the sonority principle is discovered by the SRN, a
similar syllable detection strategy can be devised. A sonority graph can be
computed on the basis of the identities of the predicted phonemes, that
ideally would consist of sequences of alternating ascending and descending
graphs. Wherever a descending line ends and an ascending line begins, a
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DISCOVERING SYLLABLES IN SPEECH 205

2A �xed hidden layer of 60 hidden units was chosen on the basis of a number of pilot
experiments using only the training material and monitoring the convergence of mean squared
error.

syllable boundary can be expected. That syllable boundary might very well
be one position to the left or to the right, since bottom sonority might lie on
(a) the last consonant of the coda of a previous syllable, (b) the �rst
consonant of the new syllable, or (c) the second consonant of the new
syllable in case of an exceptional (extrametrical) /s/ in the onset. Figure 2
displays three two-syllabic example words demonstrating these three
possibilities.

In the word displayed in Fig. 2(a), /ratsal/ (raadzaal, “council hall”), it can
be seen that the syllable boundary between /t/ and /s/ follows the bottom
sonority of the /t/. In Fig. 2(b), /lertak/ (leertaak, “learning task”), a syllable
boundary occurs immediately before the /t/ with the bottom sonority.
Finally, the word displayed in Fig. 2(c) /narst@/ (naarste, “nastiest”), contains
an extrametrical /s/ in the �nal syllable /st@/.

Experimental Setup and Methods
In this subsection we provide details on the SRN learning parameters and
topology used in our experiments, as well as a description of the analyses
performed on the experimental outcomes.

Learning Parameters and Topology

On the basis of the �xed training and testing material, we performed 10
experiments with different weight initialisations (weights were set randomly
at values between 2 1.0 and 1.0). In each experiment, the SRN was trained
with a learning rate of 0.1, a momentum of 0.4, 22 input units, 60 hidden
units,2 22 output units, a convergence threshold of 0.0001 with a convergence
patience of 2 (i.e. training was stopped when the mean squared error of the
SRN decreased by 0.0001 or less during two training cycles, where one
training cycle equals the presentation of the full training set to the SRN), and
an update tolerance of 0.2 (i.e. weights of connections from an output node
of which the activation is within 0.2 of its target value are not updated in
back-propagation).

Figure 3 presents a graphical representation of the network topology
used. In this example, where the phoneme sequence /bAl/ (bal, “ball”) is
being processed, the network correctly predicts an /l/ after the presentation
of /A/, while somehow remembering the previous presentation of /b/ in its
context layer.
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FIG. 2. Three examples of two-syllabic words with a syllable boundary (a) that occurs
immediately after the phoneme with the lowest sonority; (b) that occurs immediately before the
phoneme with the lowest sonority; and (c) that, because of an extrametrical /s/, occurs two
positions before the phoneme with the lowest sonority.
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DISCOVERING SYLLABLES IN SPEECH 207

FIG. 3. Network topology used in experiments. The network has three layers plus an extra
context layer. Arrows between layers represent standard back-propagation connections (layers
are fully connected); boldface type line represents a full one-to-one copy connection between
the hidden and the context layer.

Analyses

In order to be able to test the �rst and second hypothesis stated previously
we performed three analyses on trained networks.

1. Prediction-error analysis: Decoding the output of a trained network
into a phoneme and compare it with the target phoneme, to see how
often phonemes are predicted correctly relative to their position in the
syllable.
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208 VROOMEN, VAN DEN BOSCH, DE GELDER

2. Sonority-graph analysis: Investigating the compatibility of the net-
work’s output with the SP, by decoding the phonemes produced by the
phoneme prediction analysis into sonority values (between 0.1 and
1.0), measuring mean sonority values for all syllable lengths and
positions, and calculating the number of correctly produced sonority
patterns using the syllable boundaries of the target sequence.

3. Syllable-boundary analysis: Investigating the relation between cues in
the network output and syllable boundaries in the material. An
analysis is made of the occurrence between syllable boundaries and
(a) phonemic-feature distances between output and target phonemes,
and (b) transition points from decreasing to increasing sonority values
in the phoneme sequence produced by the network.

RESULTS

Prediction-error Analysis
The network output is decoded into a phoneme each time a pattern is fed
forward through the network. Decoding is done by computing the Euclidean
distance between the output activation values and the phonemic feature
codes of all 54 phonemes, and taking the phoneme associated to the code
with the smallest Euclidean distance as the output of the network. When this
phoneme is identical to the target phoneme, it is counted as correctly
predicted.

An illustrative baseline score for predicting the identity of a phoneme
without knowledge of its left context, is 11.9%, namely the percentage
occurrence of the most frequently occurring phoneme in the test set, /@/.
The average prediction score over 10 experiments on the test set was
22.5% (standard deviation: 0.6): as expected, prediction accuracy is
low, but is clearly more accurate than the result of just guessing the most
frequent phoneme; the score surplus does indicate some success in
generalisation.

Counting the numbers of correctly predicted phonemes, and sorting these
numbers by the syllable positions they occur in, would give a rough image of
the distribution of prediction errors within the syllable. The dissatisfactory
aspect of this crude prediction, however, is that it would not be able to
express the fact that, for example, an output of /A/ would be less incorrect in
the case of the target value /a/ than it would be in the case of the target value
/p/. We therefore introduce a prediction-error function sensitive to the fact
than some phonemes are more alike. First, a de�nition of this prediction
error is needed. The prediction error of a single network output (i.e. the
prediction of one phoneme) is the Euclidean distance in phonemic-feature
space between the feature encoding of the output phoneme and the feature
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DISCOVERING SYLLABLES IN SPEECH 209

3Elman (1990) implements a similar prediction-error analysis in his experiments with the
application of SRNs to letter prediction in sequences of words.

FIG. 4. Percentage prediction-error values (phonemic-feature distances) of predicted
phonemes of the �ve most frequent syllable structures and an overall average, per syllable
position.

encoding of the target (desired) phoneme (a positive integer value).3 Thus,
the prediction error simply expresses the number of articulatory features the
prediction is off the target. For example, if the network predicts a /A/ while
the target phoneme is /a/, the prediction error is 1, as /A/ differs in only one
articulatory feature from /a/ (namely, the back feature, expressing the place
of articulation in the mouth). In case of the network predicting a /A/ when the
target phoneme would be /p/, the prediction error would be 10, as /A/ and /p/
differ in 10 articulatory features.

We computed over all experiments the average phonemic-feature
distance per syllable position; Fig. 4 displays these values for the overall
values averaged over all syllable structures, and for the �ve most frequently
occurring syllabic structures. The �gure displays an overall decreasing
phonemic-feature distance from the beginning of the syllable to the end of
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210 VROOMEN, VAN DEN BOSCH, DE GELDER

the syllable, with a minor increase on the fourth syllable position (due to the
fact that on this position mainly consonants occur; as more features are
devoted to distinguishing between consonants than between vowels,
consonants have on the average a larger distance to each other). More
generally, the results in Fig. 4 show that the prediction of the �nal phoneme
in a syllable is always more accurate than the prediction of the �rst phoneme.

Figure 4 also displays the fact that the largest prediction errors are made
with the V of the VC structure. As the prediction error is about 7.5 (i.e. there
are on average about seven–eight differing articulatory features between the
target phoneme and the predicted phoneme, which is in fact equal to the
average distance between vowels and consonants in the Hoppenbrouwers &
Hoppenbrouwers, 1987 encoding), the network on the average expects a C.
This is understandable given the fact that within the training set only about
7.5% of the syllables start with a V. After the actual presentation of the V of
a VC structure, the network is able to produce a much better prediction,
which is mostly a C; the large difference for the V and C for VC structures in
Fig. 4 is a re�ection of this fact. A second deviation from the overall
decreasing trend in Fig. 4 is the relatively large phonemic-feature distance of
the prediction of the second C in CCV structures. Apparently, the network is
mostly expecting a phoneme quite different from a C there, that is, a V, as it
may have generalised to expect a V after a C, which is indeed the majority
case in the data: In 61.5% of all cases, a C is followed by a V, and in 38.5% by
a second C. A third deviation in Fig. 4 is the fact that the V of CVC structures
is predicted with a lower accuracy than the seemingly similar V of CV
structures. Although the difference is less than one articulatory feature, it
can be explained by the fact that more different Vs can occur in the closed
syllable structure CVC (i.e. both long and short vowels) than in the open
syllable structure CV (i.e. mainly long vowels and /@/). Having to choose
between more alternatives in predicting the V of a CVC structure may thus
induce slightly larger prediction errors in terms of articulatory features as
compared to predicting the V of a CV structure.

In metrical phonological theory, the difference between the frequently
occurring “majority” cases, such as the CV structure in syllables, and the less
frequent cases, such as VC and CCV structures, is often expressed as a
difference between unmarked (i.e. general) and marked (i.e. exceptional)
cases. This difference serves to trigger the application of general
phonological rules to the unmarked cases, and the application of speci�c
(exceptional) phonological rules to marked cases. Markedness of a segment
is thus a means to select the proper rules that should apply to that segment
(Calabrese, 1995). It is the task of the human listener/speaker to learn to
recognise markedness, which in general is more dif�cult to do than to learn
the underlying principles for the unmarked cases. Although our network is
in no way explicitly trained to recognise markedness, it does display a
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DISCOVERING SYLLABLES IN SPEECH 211

tendency to expect the unmarked case (i.e. the CV syllable structure), and to
have trouble recognising marked cases (such as the VC and CCV
structures). It should be noted that this super�cial correlation is nothing
more than an emerging property of the application of the total of all
distributional generalisations the network has learned.

Focusing solely on syllable structures does not give right to the fact that
the network actually learns to predict successfully a limited number of
phoneme strings occurring frequently in the training material (this fact
relates to the third hypothesis mentioned previously, stating that the
network will learn frequently occurring words or morphemes in the text).
Close analysis of the predicted output shows that the network is able to
predict with high accuracy the �nal part of the �rst name of the main
character in the novel, /fr ts/ (Frits). Generally, after /f/ and /r/ are presented
(and mostly mispredicted), the network consistently produces / /, /t/, and /s/
as the three next phonemes. The same applies to the words /mud@r/ (moeder,
“mother”) and /va:d@r/ (vader, “father”), for which the network is
consistently able to predict /d@r/ after having seen /m/ and /u/, or /v/ and /a:/,
respectively. No similar effects were found relating to high-frequent af�xes
such as / Î/ -ing or /t@/ -te, as they are simply too short, and their preceding
phonemes and phoneme strings too diverse to trigger uniquely correct
predictions. Yet, from the three examples /fr ts/, /mud@r/, and /va:d@r/,
relating to the three most frequently occurring characters in the novel De
Avonden, it can be seen that the network can learn a limited number of
phoneme sequences relating to high-frequency lexical items.

Sonority-graph Analysis
As set out earlier in the Introduction, the sonority principle (SP; Selkirk,
1984) states that, within a syllable, sonority starts low at the onset, increases
towards a peak value at the nucleus position, and gradually decreases along
the coda until the end of the syllable. We computed the average sonority
values of all predicted phonemes and sorted them according to their
positions in the syllables of the corresponding target phoneme sequence.
Figure 5 displays these average sonority values for the �ve most frequently
occurring syllable structures. The graph in Fig. 5 is centred around the
nucleus of each syllable. If the network has grasped the sonority principle,
one would expect to see a peak at the nucleus, and decreasing sonority
values going further right or left into the syllable. This general pattern is
indeed present in Fig. 5 for each of the �ve syllable structures, albeit weakly
in the case of VC-structures. The relatively low predictability of the V of VC
syllables is expressed in Fig. 5 by an average sonority value of 0.44, indicating
that in the network usually expects a consonant at that point (cf. Fig. 4 for an
analogous effect in phonemic feature distance at the same position).
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212 VROOMEN, VAN DEN BOSCH, DE GELDER

FIG. 5. Average sonority values of predicted phonemes, per syllable position for each of the
�ve most frequently occurring syllable structures. Graphs are centred around the nucleus.

The results displayed in Fig. 5 for the CV, CVC, and VC syllable structures
leave the interpretation open that the network is constantly predicting a
CVCVCV. . . sequence. This would be normal since CV is the most
frequently occurring syllable structure (45.0% of the syllables in the data
have a CV structure); the most probable phoneme following a C is a V, and
vice versa. By predicting a CVCVCV. . . sequence, CV and CVC syllables
could be correctly predicted as regards the sonority of their phonemes.
However, the average sonority values plotted for the CCV and CVCC
syllables show that the network is able, on average, to predict that the second
phoneme of the CC clusters in both the CCV and the CVCC structures is
indeed a consonant, rather than a vowel. Both sonority values re�ect that the
network is expecting a consonant with sonority 0.4 (on average). It can
therefore be hypothesised that the network learns to be sensitive to context
to a degree that enables it to be more subtle than predicting only a
CVCVCV. . . sequence. On inspection, it turns out that there are statistical
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DISCOVERING SYLLABLES IN SPEECH 213

clues in the left-context of the second C of CC clusters both in CCV and in
CVCC syllables for expecting a consonant, that the network may have
learned. For the case of CCV syllables, the �rst consonant has an average
sonority of 0.20 in our data. Chances are that after a low-sonority consonant
(of sonority 0.3 or lower) in syllable-initial position, a higher-sonority
consonant (of sonority 0.4 to 0.6) or a low-sonority vowel (of sonority 0.7 or
0.8) follows, rather than a high-sonority vowel (sonority 0.9 or 1.0).
This is the case in 76% of all syllables starting with a consonant with sonority
value 0.3 or lower. The network appears to have picked up this
generality by expecting, on average, a high-sonority consonant rather than
a vowel as the second phoneme in CCV syllables. Although this suggests that
the second phoneme of CCV syllables is predicted rather accurately,
the prediction accuracy of this phoneme displayed in Fig. 4 shows that the
actual predicted phoneme is, on average, rather different from the target
phoneme. Sonority appears to be predicted better than articulatory
features here.

For the case of CVCC structures, both the V and the C before the second
C in the CC clusters provide clues to expect a low-sonority consonant. First,
the V is generally short in CVCC syllables: 18 of the 24 CVCC syllables in
our data have short vowels. Second, the �rst C of the CC cluster in CVCC
syllables has an average sonority value of 0.54. Moreover, the second C has
an average sonority value of 0.17 (15 CVCC syllables have /t/ in �nal
position). Although the data contains many exceptions, the rule appears to
be that a low-sonority consonant can be expected after a short vowel and a
high-sonority consonant (this is the case in 18 out of the 24 CVCC syllables).
By predicting, on average, a consonant with sonority 0.39 as the �nal
phoneme of CVCC syllables, the network shows that it is indeed able to use
the context to predict consonants more often than vowels at this position,
thus overruling the general bias towards predicting a CVCVCV. . .
sequence.

Altogether, Fig. 5 provides indications of the fact that the output of the
network might re�ect the SP. As a direct test of the compatibility of
the output of the network with the SP, we compared the sonorities of the
sequence of phonemes produced by the network to the syllables of the target
phoneme sequence. For each syllable in the target sequence, we checked (a)
whether the corresponding sonority pattern of the predicted phoneme
output peaked at the position of the nucleus, and (b) whether it
monotonically decreased further away left and right from the nucleus, that
is, whether that syllable abided by the SP. We found that the percentage of
sonority patterns produced by the network abiding by the SP in this way was
92.6% (averaged over the 10 experiments). For comparison, the target
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214 VROOMEN, VAN DEN BOSCH, DE GELDER

4The 3.3% defective cases mainly stem from the fact that in Dutch the onset /st/ and the coda
/ts/ are accepted, whereas the sonority of /s/ is usually taken to be higher than that of /t/. As set
out earlier, linguistic theories of metrical phonology usually regard the /s/ as being extrametrical
to account for this irregularity (cf. Halle & Vergnaud, 1980).

phoneme sequence (the test set) contains 96.7% SP-abiding syllables.4 This
remarkably high percentage of SP-abiding sonority sequences in the
network output indicates that the generalisations the network has made
during training re�ect the SP to a rather high degree.

As an illustration, Fig. 6 displays an excerpt from the test set of which the
target string reads /z@åKÎna:rd@kœyk@huåa:t@thi:r/ (Ze ging naar de keuken.
“Hoe gaat het hier . . .” She went to the kitchen. “How are things here . . . ”).
The characters displayed in Fig. 6 representing phonemes are directly taken
from our ASCII-encoding of the International Phonetic Alphabet. It can be
seen that only a few phonemes are predicted correctly (8 out of 24), most of
them at the end of syllables (of which the boundaries are denoted by vertical
dotted lines). More important is the graph part of Fig. 6, showing both the
sonority values of the target string of phonemes (dashed line) and the
sonority values of the predicted phoneme string (solid line): It can be seen
that for all syllables in the target string, both lines re�ect the SP;
furthermore, the network is very well capable of predicting VC structures.
On two occasions in this example string, one consonant follows another
consonant in the target string; in the �rst case, the network incorrectly
expects a V (i.e. a /@/). However, according to the criterion mentioned
previously with which we compute the amount of syllables in the string of
predicted phonemes that abide by the SP, all syllables in the string of
predicted phonemes follow the SP.

Syllable-boundary Analysis
We have shown that: (a) SRNs trained to predict phonemes in phoneme
sequences display the ability to predict phonemes at the end of a syllable
more accurately than phonemes at the beginning of a syllable, and (b)
trained SRNs produce sequences of predicted phonemes that abide by the
SP to a high degree. Both phenomena could contribute to �nding segment
cues, for example, syllable boundaries, in the SRN’s output. Before
reporting on correlations found between these phenomena and syllable
boundaries, it is important to establish a baseline criterion for success in
�nding such correlations. We measure this success in terms of the accuracy
of deciding whether a phoneme is the �rst phoneme of a syllable. Four
events can occur with such decisions: (1) The decision is correctly YES, that
is, a hit; (2) the decision is incorrectly NO, that is, a miss; (3) the decision is
incorrectly YES, that is, a false alarm; or (4) the decision is correctly NO,
that is, a correct rejection. The percentage of correct syllable boundary
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FIG. 6. Examples of a string of target phonemes extracted from the test set (bottom row of
characters), the string of phonemes predicted by the network (top row of characters), and the
sonority values of both strings plotted in the top graph area. The solid line represents the
sonority graph of the string of predicted phonemes; the dashed line represents the sonority
graph of the string of target phonemes. Syllable boundaries are denoted by vertical dotted lines.
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decisions is calculated by taking the portion of the sum of hits and correct
rejections in the total number of decisions. Always predicting the most
frequent outcome, NO, results in a baseline accuracy of 60.9% correct
decisions. Any accuracy resulting from basing syllable boundary decisions
on the basis of the SRN’s output should be signi�cantly higher than this
baseline accuracy to be considered relevant.

Counting the occurrence between prediction-error peaks and syllable
boundaries quickly showed that prediction error (i.e. Euclidean phonemic-
feature-space distance) does not provide sensible clues for the occurrence of
syllable boundaries. Counting an error difference between the prediction
error of a phoneme and the previous phoneme of three or larger as an error
peak, we obtained an optimal decision accuracy of 62.0%, hardly better than
the baseline score. Apparently, there is too much noise in the phonemic
output of the network for it to be used as a source for syllable boundary cues.

Sonority Changes and Syllable Boundaries

When the sonority of the phoneme predicted by the SRN is lower than
that of the preceding phoneme and the next phonemes, chances are that a
syllable boundary occurs immediately before or after that phoneme. It was
shown earlier that the SRNs were generally able to grasp the sequential
aspects of the SP, hence some success might be expected here. We
concentrated on analysing the co-occurrence of syllable boundaries in the
output phoneme sequence, and phonemes in the network output at position
Pwith lower sonority values than their immediately preceding and following
adjacent phonemes at positions P 2 1 and P 1 1. This strategy led to a
syllable boundary decision accuracy of 79.9%, signi�cantly better than the
baseline accuracy [t(10) 5 37.4, P . 0.001]. It should be noted that the same
strategy applied to the target phoneme sequence leads to a decision accuracy
of 82.1%.

We applied a second, less stringent method to our data, which counts a
decision as correct when a syllable boundary is at the same position as the
output phoneme with lower sonority than its neighbours, or one position
immediately following this position. This method gives right to the fact that
consonants with a low sonority may well be the last consonant of a coda,
therefore marking the position immediately before the syllable boundary
(cf. Fig. 2 for examples). This method renders a decision accuracy on the
basis of the output of the networks of 91.1%, signi�cantly better than the
baseline output, t(10) 5 77.8, P . 0.001. Although this score represents a
�attering decision accuracy, it indicates that the SRNs have grasped the
hat-shaped behaviour of sonority along phoneme sequences.

Altogether, these results indicate that some information concerning
syllable boundaries is present in the sonorities of predicted phonemes. This
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DISCOVERING SYLLABLES IN SPEECH 217

information is often incorrect, but gives signi�cantly more clues than a
baseline guess about the presence and positions of syllable boundaries.

CONCLUSION
The present study investigated the output of SRNs which, although
explicitly trained on a different task, are able to extract basic generalisations
that hold over sequences of phonemes in connected speech. We showed that
one of the most apparent generalisations of the trained SRNs is the fact that
sonority varies in a hat-shaped way, marking syllable boundaries. Although
the hats predicted by the networks did not match all syllable boundaries in
the target phoneme sequence, they do abide by the SP in 92.6% of the
syllables. The network thus succeeded in discovering some important
structural aspects of unsegmented speech. It should be noted that this
“discovery” was neither part of the task the network was trained on, nor an
explicit content of the network output. Rather, we have used analyses on top
of the network to generalise over the output of the network after training.
When we claim that the network has discovered the SP, we mean that
analyses show that the output of the network abides by the SP to a high
degree, while the network’s SP-abiding behaviour actually emerges from the
application of the total of all distributional generalisations the network has
learned.

Some conclusions can be drawn regarding the bootstrap problem
mentioned in the Introduction. We wanted to examine whether a recurrent
prediction network was able to give segmental cues while processing
unsegmented speech. With an approach comparable to the approaches
Cairns et al. (1997), Doutriaux & Zipser (1990), Elman (1990), we looked for
indications of generalisations made by the network that were indirectly
related to the task of prediction. As said, one such generalisation we found
was the sonority principle. Although the cues extracted from the network
regarding syllabic structure were far from perfect, the discovery of the
sonority principle is a major step towards the discovery of the syllable. This
knowledge, on its turn, may help the human listener to segment speech into
words.

However, one of the critical aspect of this claim concerns the relation
between the task the model is performing and the task the human listener is
doing. Is it the case that the child is predicting phonemes and then discovers,
by accident, the “real” principles of language? There is some evidence from
the phoneme monitoring literature that adults can indeed predict the
upcoming phoneme of a word (e.g. Marslen-Wilson, 1984). However, the
phoneme-monitoring task can hardly serve as an analogy for listening to
speech, let alone for the task the newborn is confronted with when listening
to an unknown language. So, in fact, it seems unlikely that the child is doing
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218 VROOMEN, VAN DEN BOSCH, DE GELDER

anything that resembles phoneme prediction. On the other hand, it seems
likely that the task the network is doing is not that critical, because the
discovery of the sonority principle has also been found with different
networks in different tasks environments. For example, Corina (1994) used a
SRN for root duplication within an arti�cial language. He observed that,
although the network performed only moderately on the task at hand, it had
nevertheless discovered knowledge about syllabic well-formedness. It was
also argued that the network might have extracted sonority information
from the input, even though it was not explicitly coded in the input. Given
that a similar type of information is discovered in a different task, it seems
that knowledge about syllabic well-formedness, and more in general, the
induction of language regularities or principles, is not crucially dependent on
the task the network is performing. There is therefore no need to maintain
that the child is doing something like phoneme prediction while listening to
speech. Rather, the conjecture is that even though the task of the network is
different from that of the child, both may discover the same co-occurrence
principles in the speech signal.

The analogy between the simulations presented here and the child
learning the language is thus a loose one. Moreover, the newborn has other
cues to speech segmentation than distributional probabilities of phonemes.
Strong as opposed to weak syllables are one possibility (e.g. Cutler & Norris,
1988; Vroomen & De Gelder, 1995, 1997), vowel identity in languages with
vowel harmony are another (Suomi, McQueen, & Cutler, 1997; Vroomen,
Tuomainen, & de Gelder, in press), but also phonetic cues like word-�nal
vowel lengthening (Klatt, 1975), or stress in �xed-stress languages, may
serve as additional cues to word segmentation (Vroomen, Tuomainen, & de
Gelder, in press). In general, it seems likely that language learners take
advantage of the many cues they can discover in the language input, because
eventually prosodic and distributional cues will converge on the same word
boundaries.
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