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Abstract

Damage to the primary visual cortex (V1) destroys the major source of anatomical input to extrastriate cortical areas
(V2, V3, V4 and V5) and produces cortical blindness ± an absence of any sensation of light and colour ± in the visual ®eld
contralateral to the side of the lesion. Neuroimaging studies, nevertheless, have recently demonstrated dorsal and
ventral extrastriate activation for stationary stimuli presented to the blind visual ®eld in the absence of V1 activity in
human subjects. To clarify the moment in time that visual information reaches extrastriate areas, by means of event-
related potentials (ERPs) we tracked the temporal course of responses to complex visual stimuli (faces) presented in the
blind ®eld of a hemianopic patient. Stimulation of the normal visual ®eld elicited a positive occipital de¯ection (P1) at 140
ms. A P1 response was also observed with stimulation of the blind ®eld, although slightly delayed (20 ms) and reduced.
Its topography and timing demonstrate that early neural activity for stationary stimuli takes place within extrastriate
regions despite V1 denervation. q 2000 Elsevier Science Ireland Ltd. All rights reserved.
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Damage to the primary visual cortex produces hemiano-

pia, a homonymous visual ®eld de®cit contralateral to the

site of the lesion. Nevertheless, numerous studies have

described a wide range of unaware visual functions in the

blind ®eld of such patients in the absence of awareness, such

as detection and spatial localization by eye and hand move-

ments of stationary or moving stimuli [6,12] or discrimina-

tion based on line orientation or wavelength [14]. The term

`blindsight' [20] has been given to these unaware residual

visual functions, which suggest that indirect subcortical

routes from the retina and the lateral geniculate nucleus

(LGN) reach several extrastriate areas bypassing the

primary visual cortex (V1).

Recent neuroimaging studies have demonstrated that

stimulation of the visually blind hemi®eld of blindsight

patients with stationary complex visual stimuli (coloured

drawings of natural objects) yields activation of occipito-

temporal regions [15], extending earlier report of dorsal

extrastriate activity during presentation of moving stimuli

[3]. The ventral extrastriate regions included V4 and LO, a

human visual cortex area dedicated to shape perception [8].

Importantly, there was no activation in the damaged or deaf-

ferented area V1 on the lesioned side of the brain, even

when reversing checkerboard patterns were presented.

However, the low temporal resolution of functional

magnetic resonance imagery (fMRI) does not allow to

ensure that these residual visual activities rapidly follow

stimulus presentation or are due to slower `top-down'

processes such as mental imagery [11]. More generally,

no information is yet available regarding the moment in

time visual information reaches extrastriate areas in the

absence of primary visual cortex. To study this issue, we

recorded event-related potentials in a hemianopic patient

presented with complex objects (faces) alternatively to his

normal and blind ®eld.

The subject was patient G.Y., a well-studied 43-year-old

hemianopic patient with damage to the left medial occipital

lobe resulting in a right half ®eld of blindness (except for a

small region of 3.58 of macular sparing), whose residual

visual abilities have been studied in many previous beha-

vioural and neuroimaging studies [2,5,7,9,18,19]. He was

tested four times in a dimly lit, electrically shielded room

with the head restrained by a chin rest at 60 cm of the screen,

®xating a cross on the centre of the screen. For the main

experiment, he was presented with two types of stimuli:
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achromatic upright faces and inverted faces. All types of

stimuli appeared randomly either in the good visual ®eld

or in the affected ®eld (80 in each ®eld, 2 averages) and

were completely randomized. Size of the stimulus was 5.5

cm width (5.48) and 8.5 height. Total luminance of the

stimulus was 25 cd/m2 (screen background and room lumi-

nance: 1 cd/m2). Faces were presented with the nearest edge

of the stimulus at least 4.78 removed from the central ®xa-

tion cross. G.Y.'s task was simply to press one response key

when he saw a normal face and another key when he

perceived an inverted face. For all stimuli presented in his

blind hemi®eld, he was encouraged to guess. Stimulus dura-

tion was 250 ms and intertrial interval was randomized

between 500 and 650 ms. The same experiment was

repeated 2 months later with stimuli presented for 1250

ms (averages 3 and 4). In another experiment, four types

of stimuli (250 ms) were presented: achromatic upright

faces and inverted faces and red coloured upright and

inverted faces (average 5±8). G.Y. was also tested in a

task in which he had to discriminate photographs of cars

from faces (250 ms presentation; averages 9 and 10).

Finally, G.Y. was presented with 5 blocks of emotional

faces (1250 ms presentation time) and he had to guess the

emotional content of the faces (happy vs. fear) by pressing

one of two keys (averages 10±15). Over the complete set of

experiments, 15 different averages were computed for faces

presented in his normal and blind ®eld.

Although G.Y. is highly experienced and reliable at main-

taining ®xation in these kinds of tasks [3,11], electrooculo-

gram (EOG) was recorded bipolarly from electrodes placed

on the outer canthi of the eyes, and in the inferior and super-

ior areas of the orbit. Scalp electroencephalograph (EEG)

was recorded from 58 electrodes mounted in an electrode

cap. Recordings were performed with a left mastoõÈd refer-

ence in the main experiment. EEG was ampli®ed with a gain

of 30 K and bandpass ®ltered at 0.01±100 Hz. Electrode

impedance was kept below 5 kV. EEG and EOG were

continuously acquired at a rate of 500 Hz (Neuroscan).

After removal of EEG and EOG artefacts, epochs beginning

100 ms prior to stimulus onset and continuing for 924 ms

were made. They were referenced off-line to a common

average reference. All the data were also referenced to a

centro-frontal single electrode (FZ). The data were low

pass ®ltered at 30 Hz. Peak amplitude and latencies of the

P1 at selected electrodes were measured relative to a 100 ms

pre-stimulus baseline. Source estimation (Advanced Source

Analysis; q1999, A.N.T. Software BV; see Ref. [13]) was

performed on the early dipolar complex (time window 20

ms before the P1 peak) with a single unconstrained dipole.

In the ®rst experiment, G.Y. accurately discriminated the

orientation of the stimuli presented in his intact visual ®eld

(99%, 1001 ms) but he was at chance in his blind ®eld.

Visual stimulations in the left, normal ®eld gave rise to a

dipolar complex consisting of a left occipital positivity (P1)

associated with a negative counterpart at right centro-lateral

electrodes (Figs. 1 and 2). Source localization con®rmed the

right extrastriate origin of this complex [10]. For stimula-

tions in the normal ®eld, the mean coordinate of the source

in the realistic head shape model (q 1999, A.N.T. Software

BV) was: 272x 220y 17z (x is antero-posterior, y is left-

right and z is vertical; 9.19% residual variance).

Stimulation in the blind ®eld led to a similar dipolar

complex consisting of an occipital positivity associated

with a negative counterpart at left centro-lateral electrodes

(Figs. 1 and 2). It was delayed and reduced (20 ms later; Fig.

1) compared with the activity observed for stimulation in the

good ®eld. Its topography shows a slightly less lateralized

distribution at posterior sites (Fig. 2). Source localization

identi®ed a single dipole in left extrastriate cortex (261x

21y 20z; 11.8% residual). Similar topographies (see Fig. 2;

right part) and identical results for source localization were

obtained with the data referenced to the FZ electrode.

Although G.Y. was at chance for all the tasks he had to

perform on the faces, all 15 averages of waveforms obtained

with the various stimulations in the blind ®eld led to the

presence of an occipital P1 component which was delayed

(grand averages: 140 ms for normal ®eld, 160 ms for blind

®eld; t14 � 6:46, P , 0:001) and reduced (grand averages:

6.05 mV for normal ®eld, 4.03 mV for blind ®eld;

t14 � 5:057, P , 0:001) as compared with the earliest activ-

ity evoked by normal ®eld presentations. Non-face stimuli

(cars) also generated a substantial P1 when presented to

G.Y.'s blind ®eld.

This is the ®rst report of a rapid extrastriate cortex activa-

tion despite V1 denervation for stationary stimuli. Without

the earliest contribution from the primary visual cortex, the

P1 is reduced and delayed but still substantial (Fig. 2). These

data are consistent with the extrastriate activation evidenced

in fMRI studies [11,17] for blind visual ®eld stimulations

but adds temporal information unavailable using fMRI. The

topography and latency of P1 observed here show that these
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Fig. 1. Evidence for a reduced an later visual P1 activity when
G.Y. is stimulated in his blind visual ®eld. The grand average
waveforms (15 experiments, electrode OZ, system 10±20)
shown are obtained for face stimuli presented in the normal
and blind visual ®eld of patient G.Y. with complete left hemi-
sphere V1 denervation.



activations do not come from top-down processes such as

visual imagery of complex objects activating visual extra-

striate areas [11] but rather re¯ect bottom-up ¯ow of infor-

mation to extrastriate regions bypassing V1.

In the different ERPs experiments conducted with G.Y.,

we modi®ed the following parameters: face orientation,

presentation time, object-type: faces vs. cars, and colour of

the stimulus. Some of these parameters (face orientation,

stimulus type) affected the potentials following the P1

when the normal ®eld was stimulated. However, there was

no obvious evidence of such variability with blind ®eld

stimulations, nor was there any evidence that G.Y. could

carry out the complex visual discriminations (upright vs.

inverted; face vs. cars; fearful vs. angry faces) better than

at chance levels. The absence of any difference between

red-coloured and black-and-white stimuli when presented

to the blind ®eld suggest further that the pathways that

might carry colour information from the LGN to extrastriate

areas such as V2 and V4 (see Ref. [16]), may not be the main

routes involved in the observations reported here. However,

these observations are in line with the fact that other direct

subcortical projections reach several extrastriate areas

bypassing V1, including indirect subcortical routes from

the retina to the pulvinar (directly and also via the superior

colliculus) and the LGN, or other subcortical projections

[2,20]. The areas contributing to an early positive potential

with an occipital topography may include V5 and dorsal V3,

in which activations have been previously observed in G.Y.'s

brain by positron emission tomography [3] and which can be

rapidly activated by motion stimuli despite V1 lesions [1] in

the monkey, but also V2d, V3a and V4v in which residual

activity has been recently evidenced for stationary stimuli

using fMRI [4,11].
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