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the role of computational and 
subjective features in emotional 
body expressions
Marta poyo Solanas1, Maarten J. Vaessen1 & Beatrice de Gelder1,2*

Humans are experts at recognizing intent and emotion from other people’s body movements; however, 
the underlying mechanisms are poorly understood. Here, we computed quantitative features of body 
posture and kinematics and acquired behavioural ratings of these feature descriptors to investigate 
their role in affective whole-body movement perception. Representational similarity analyses and 
classification regression trees were used to investigate the relation of emotional categories to both 
the computed features and behavioural ratings. overall, postural rather than kinematic features 
discriminated better between emotional movements for the computed as well as for the behavioural 
features. in particular, limb angles and symmetry appeared to be the most relevant ones. this was 
observed independently of whether or not the time-related information was preserved in the computed 
features. Interestingly, the behavioural ratings showed a clearer distinction between affective 
movements than the computed counterparts. finally, the perceived directionality of the movement (i.e. 
towards or away from the observer) was found to be critical for the recognition of fear and anger.

Social species spend considerable time watching each others’ body postures and movements since this informa-
tion is highly relevant for their own behaviour. Often, our understanding of body expressions is direct and auto-
matic as, for example, when we react to an aggressive posture by stepping back. Other times, we are consciously 
aware of the feelings triggered by the body postures and movements (e.g. fear, anger, dominance)1,2. However, 
neither the body features driving the perception of the emotional content nor the features that play a prominent 
role in our conscious feelings have been systematically investigated. A better understanding of the core features of 
nonverbal communication will have a crucial impact on the theories of social interaction, and will directly benefit 
many areas of society, especially health care, where this knowledge could be useful in the treatment of affective 
communication disorders.

Most studies have so far investigated how bodies convey emotion by relating verbal descriptions of posture 
and movement properties to qualitative emotion categories3,4. For example, important postural features in dis-
criminating between affective states have been found including head inclination, which is typical for sadness, or 
limb flexion, which observers associate with the expression of anger4,5. Other candidates are the degree of lateral 
opening of the body (e.g. the body is more extended for happy than for sad), the vertical extension of the body 
(e.g. hands are often raised for happy but remain low for sad), symmetry (e.g. joy is often depicted by symmet-
ric up and down hand movement) or the directionality of the movement (e.g. forward whole-body movement 
depicts anger) (for a review see ref. 6).

In contrast to the use of qualitative descriptions and categories, computer scientists are increasingly interested 
in modelling the properties of body postures and movements6–11. This requires a detailed analysis of the complex 
information conveyed by body movements: kinematic (e.g. velocity), dynamics (e.g. mass and force) and posture/
form information and its changes over time12. For example, with regard to kinematics, it has been found that 
velocity, acceleration, and jerkiness strongly influence the perception of emotion in expressive arm13–15 and also 
in whole-body movements10.

However, the majority of studies investigating the contribution of form and motion information to emo-
tional attribution employed point-light displays (PLD)16. While the use of PLDs allows for the control of possible 
confounds in emotional recognition, such as identity and gender, as well as permitting systematic variations of 
kinematic and postural features, they are far from representing natural stimuli. Dance movements have also 
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been used11,17 but, although more naturalistic, they are often exaggerated and do not represent day-to-day emo-
tional movements, actions or social interactions. The use of static body pictures, on the other hand, obviates the 
dynamic nature of affective body signals. Therefore, more naturalistic dynamic stimuli are needed to gain insight 
on how low-level visual body attributes contribute to the perception of specific affective states. Their use, however, 
comes with difficulties since the configuration of whole-body expressions presents a high dimensionality, and its 
overall shape varies strongly during movement10,18.

Given the inconclusive literature on this topic and the diverse nature of the stimuli used in previous studies, 
the relative role of postural and kinematic information is not clear. The goal of the present study was to test the 
hypothesis that kinematic and postural properties reflect differently the affective content of the body movement. 
To this aim, we pioneered a quantitative representation of naturalistic whole-body movements using computa-
tional features and related them to emotion. Our second question concerned the relation of behavioural features 
derived from measures of subjective perception to the computed features as well as to emotional categories.

Results
computational features. Our first question was whether (dis)similarities in the kinematic and postural 
features of body movements would reflect the affective categorical structure. For this purpose, several quantita-
tive body features were computed from affective body-movement videos expressing anger, fear, happiness or a 
non-emotional expression. To compute the features, we estimated the position of the actors’ main joints using the 
state-of-the-art 2D pose estimation library OpenPose (v1.0.1)19. Kinematic features included velocity, accelera-
tion and vertical movement (i.e. amount of displacement of each keypoint in the y-axes between adjacent frames). 
Postural features consisted of symmetry (i.e. distance between each pair of joints with respect to the axis that 
divides the body vertically by the nose), limb angles (i.e. angle between two adjacent body segments, including the 
angles for the elbows, knees, shoulders and hips) and three different computations of body contraction: shoulder 
ratio (i.e. amount of extension of the body joints with respect to the shoulders), surface (i.e. area spanned by the 
total body extension in the x-axis and the extension in the y-axis) and limb contraction (i.e. average of the dis-
tances between the wrists and ankles to the head).

To investigate the relationship between these features and emotion categories we used representational simi-
larity analysis (RSA)20,21. This method is based on the computation of the relations between pairs of stimuli, which 
are represented in the so-called representational dissimilarity matrices (RDMs). These matrices are, therefore, 
able to capture the level of (dis)similarity across stimuli and allow the comparison between different stimuli 
representations and data modalities (see Materials and methods). Figure 1 illustrates the results of the representa-
tional similarity analysis conducted with the computed features. The resulting RDMs were arranged in the same 
order as the four-emotional categories RDM (see Fig. 1b, upper left corner). The (dis)similarity structure of sym-
metry showed a clear dissociation between neutral and the rest of the affective body movements. Likewise, the 
neutral condition presented more similarities to itself with respect to shoulder ratio and limb angles than to the 
other emotional classes. For limb angles, the fearful condition also showed a high degree of within-category simi-
larity and between-category dissimilarity. Kinematic RDMs such as the ones for velocity, acceleration and vertical 
movement did not reflect a clear differentiation between emotional categories.

To investigate whether the observed differences between emotional categories were significant, a one-way 
repeated-measures ANOVA was computed, separately, for each feature (see Fig. 2). Velocity showed a significant 
main effect of emotion (F(1.764, 22.926) = 4.835, p = 0.021, ηp

2 = 0.271), with Bonferroni corrected post-hoc 
pairwise comparisons showing that the angry (M = 3.4, t(13) = 3.946, pBonf = 0.01), happy (M = 3.71, t(13) 
= 3.109, pBonf. = 0.05) and fearful (M = 3.14, t(13) = 4.903, pBonf = 0.002) conditions significantly faster than 
the neutral one (M = 1.9). Acceleration also presented a main effect of emotion (F(3, 39) = 5.202, p = 0.004, 
ηp

2 = 0.286), with anger (M = 4.13, t(13) = 4.364, pBonf = 0.004), happiness (M = 4.11, t(13) = 3.126, pBonf = 0.048) 
and fear (M = 4.01, t(13) = 4.753, pBonf = 0.002) showing significantly higher acceleration values than neutral 
movements (M = 2.58). A significant main effect of emotion was also observed in the case of vertical move-
ment (F(3,39) = 3.226, p = 0.033, ηp

2 = 0.199), where angry expressions (M = 0.39, t(13) = 3.114, pBonf = 0.048) 
presented more vertical displacement than fearful ones (M = −0.28). Limb angles showed a significant main 
efect of emotion (F(3,39) = 13.499, p < 0.001, ηp

2 = 0.509), with the limbs in the angry (M = 141.87, t(13) = 
3.376, pBonf = 0.03), happy (M = 148.36, t(13) = 6.381, pBonf < 0.001) and neutral (M = 140.39, t(13) = 4.719, 
pBonf = 0.002) conditions being significantly less flexed than in fear (M = 121.27). The main effect of emotion 
was significant in the case of symmetry (F(3,39) = 7.372, p < 0.001, ηp

2 = 0.362), with angry (M = 33.27, t(13) = 
−3.651, pBonf = 0.018) and happy (M = 32.26, t(13) = −3.463, pBonf = 0.025) movements being significantly less 
symmetrical than neutral ones (M = 50.68). The significant main effect of emotion in shoulder ratio (F(3,39) = 
17.416, p < 0.001, ηp

2 = 0.573) revealed that angry (M = 0.49, t(13) = −8.084, pBonf < 0.001), happy (M = 0.5, 
t(13) = −5.21, pBonf = 0.001) and fearful bodies (M = 0.51, t(13) = −7.847, pBonf < 0.001) were significantly more 
extended than neutral ones (M = 0.69). Surface presented a significant main effect of emotion (F(3,39) = 3.712, 
p = 0.019, ηp

2 = 0.22), with happy (M = 47054.6, t(13) = 3.379, pBonf = 0.03) being significantly more extended 
than neutral movements (M = 36090.46). Finally, the significant main effect of emotion for limb contraction 
(F(3,39) = 10.410, p < 0.001, ηp

2 = 0.445) revealed that angry (M = 756.99, t(13) = 3.455, pBonf = 0.026), happy 
(M = 751.89, t(13) = 4.542, pBonf = 0.003) and neutral bodies (M = 803.6, t(13) = 4.787, pBonf < 0.001) were sig-
nificantly more extended than the fearful ones (M = 684.63).

To examine whether the kinematic and postural attributes relate to each other and/or to the emotional cat-
egories, pairwise comparisons were computed between the corresponding matrices (Fig. 3; see Table SR1 in 
Supplementary Results for correlation and p-values; below only p-values corrected for multiple comparisons are 
reported). Interestingly, both postural and kinematic RDMs were positively correlated, although weakly, with 
the emotion RDM with the exception of vertical movement and surface: velocity (r(1538) = 0.094, p = 0.002), 
acceleration (r(1538) = 0.101, p = 0.001), limb angles (r(1538) = 0.251, p < 0.001), symmetry (r(1538) = 0.262, 
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p < 0.001), shoulder ratio (r(1538) = 0.185, p < 0.001), and limb contraction (r(1538) = 0.112, p < 0.001). The 
feature matrices that most strongly correlated with the emotion RDM were, therefore, limb angles and symmetry. 
Kinematic RDMs overall correlated more strongly among each other, specially velocity and acceleration (r(1538) 
= 0.768, p < 0.001) while postural matrices showed weaker correlations. Among these, limb angles and symmetry 
(r(1538) = 0.377, p < 0.001), and shoulder ratio and surface (r(1538) = 0.547, p < 0.001) presented the relatively 
strongest correlations. The relationship between postural and kinematic matrices was weak and often negative.

To further investigate the relationship between affective states and kinematic and postural attributes of body 
movement, two decision tree classifiers were trained and tested. The eight computed features were used as pre-
dictors and the emotional categories as the predicted class. The two models differed in whether or not the fea-
ture descriptors kept the temporal information of the movement. The model using features averaged over time 
provided an overall classification accuracy of 61% (angry = 35%, happy = 62%, neutral = 63%, fear = 95%; see 
Fig. SR1A in Supplementary Results for more details on classification accuracy by emotion) and showed that the 
angles between the limbs, symmetry, and the vertical displacement of the body joints are the most relevant fea-
tures for the classification of emotion from body movements (see Fig. 4a; see Fig. SR2 in Supplementary Results 
for an overview of the classification tree). When using feature descriptors that kept the temporal information (e.g. 
using information from individual frames), limb angles still appeared as the most relevant predictor, together 
with shoulder ratio and limb contraction (see Fig. 4b). Importantly, this second model gave the higher accuracy 
of 84% (angry = 79%, happy = 83%, neutral = 92%, fear = 83%; see Fig. SR1B in Supplementary Results for more 
details on classification accuracy by emotion).

Two more decision trees were performed that investigated whether a specific body part was most responsi-
ble for the recognition of emotion. This analysis revealed that the left side of the body was more relevant than 
the right side or the head/nose position in the distinction between emotions (classification accuracy> 90%, see 
Fig. SR3A in Supplementary Results). A more detailed examination showed that the wrists, especially the left one, 

Figure 1. Representational dissimilarity matrices of the kinematic and postural features. (a) Example of a key 
video-frame per emotional category from our stimulus set with the OpenPose skeleton overlaid on top. From 
top to bottom: angry, happy, neutral and fearful stimuli. (b) The RDMs represent pairwise comparisons between 
56 stimuli with regard to the kinematic (i.e. velocity, acceleration and vertical movement) and postural (i.e. limb 
angles, symmetry, shoulder ratio, surface and limb contraction) computed features averaged over time (see 
Supplementary Materials for more information). The dissimilarity measure reflects Euclidean distance, with 
blue indicating strong similarity and yellow strong dissimilarity. Colour lines in the upper left corner indicate 
the organization of the RDMs with respect to the emotional category (anger: red; happiness: yellow; neutral: 
green; fear: purple) of the video stimuli.
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were the most important body parts in the classification of affect (classification accuracy> 95%, see Fig. SR3B in 
Supplementary Results).

Behavioural ratings. A further goal of this study was to investigate the (dis)similarity of different emotional 
body movements with regard to the perceived kinematic and postural features. For this purpose, 30 partici-
pants answered six questions concerning kinematic (i.e. amount of movement, fast movement, vertical move-
ment, direction of the movement) and postural (i.e. body contraction, symmetry) aspects of the movement. 

Figure 2. Feature differences across emotions. For each feature, an ANOVA with a four-level factor Emotion 
(Anger, Happiness, Neutral and Fear) was computed using each video’s averaged feature values as input. Lines 
and asterisks indicate Bonferroni-corrected significant pairwise comparisons (p < 0.05).

Figure 3. Correlation between representational dissimilarity matrices of kinematic and postural features. The 
RDM represents the level of (dis)similarity between each of the kinematic (i.e. velocity, acceleration and vertical 
movement) and postural (i.e. limb angles, symmetry, shoulder ratio, surface and limb contraction) matrices 
(see Fig. 1). Distances are indicated in 1-Spearman’s correlation values, with blue indicating strong similarity 
and yellow strong dissimilarity. Asterisks and rhombi below the diagonal indicate significant correlations 
after Bonferroni correction and correlations that presented significant uncorrected p-values, respectively 
(αbonf = 0.05/9, with nine comparisons per feature; see Table SR1 in Supplementary Results for correlation and 
p-values).
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To gain more insight on their perception of the stimuli, five more questions were asked about emotional- (i.e. 
emotional category, intensity, familiarity, valence) and action-related traits (i.e. action category) of the stimuli 
(see Methods and Supplementary Materials for more information on the behavioural task). The assessment of 
the level of inter-rater agreement revealed a high consistency (> 90%) across participants in the all the ratings 
(see Supplementary Table SR2). Figure 5 shows the average perceptual (dis)similarity scores across participants 
for each of the possible combinations of the 56 videos, for each rating, respectively. The (dis)similarity structure 
of kinematic-related ratings, such as amount of movement, fast and vertical movement, showed a relatively clear 
dissociation between neutral and the rest of the affective body movements. Likewise, the ratings for the neutral 
condition presented more within-category similarity with respect to contraction and symmetry than to the other 
emotional classes. This distinction was also clearly marked in the emotional intensity matrix, where the neu-
tral category presented high within-category similarity and between-category dissimilarity. The four emotional 
categories did not show differences with regard to emotional intensity. However, participants reported having 
different degree of familiarity across categories: anger, neutral and fear presented within-category consistence 
while this was not the case for happiness. With respect to between-category comparisons for familiarity, only 
anger and fear showed some degree of similarity, whereas dissimilarity dominated the rest of the comparisons. 
A high within-category similarity was observed for valence. As could be expected, happiness displayed a strong 
dissimilarity to fear and anger with respect to valence while the latter ones presented higher similarity. For the 
forward/away rating, the fearful and angry conditions showed a high degree of within-category similarity and 
between-category dissimilarity while the other categories were more similar within and between each other.

To examine whether the kinematic-, postural-, emotional- and action-related ratings correlate to each other 
and/or to the emotional categories, pairwise comparisons were computed between the corresponding matrices 
(see Fig. 6 and Table SR3 in Supplementary Results for correlation and p-values; below only p-values corrected 
for multiple comparisons are reported). The behavioural rating on emotional categories correlated positively 
with all the behavioural ratings, showing the strongest correlations with valence (r(1538) = 0.580, p < 0.001) and 
action-category ratings (r(1538) = 0.887, p < 0.001). Participant’s emotional ratings correlated positively with 
the emotional categories was well (r(1538) = 0.728, p < 0.001). Indeed, participants classified the affective body 
movements with high accuracy (see Fig. SR4 in Supplementary Results for an inspection of the confusion matrix, 
also Fig. 5 for the perceptual similarity RDM with respect to emotion). Neutral and fear were the most accurately 
recognised categories with 97 and 98% correct classification rate, respectively, while movements intended to 
express happiness had the lowest correct emotion attribution (78%), being most often confused with neutral body 
movements. In addition, the emotional categories correlated positively with all the remaining behavioural rat-
ings, the strongest correlations being with action-category ratings (r(1538) = 0.720, p < 0.001) and forward/away 
(r(1538) = 0.535, p < 0.001). As with the computed features, kinematic ratings correlated more strongly among 
each other while postural ratings exhibited weaker correlations. The comparison between postural and kinematic 
ratings showed overall moderate to weak positive correlations.

To further investigate possible contributions of the perceived kinematic, postural and emotional attributes to 
the classification of emotion, two decision tree classifiers were trained and tested. The classification of emotion 
was performed using either (1) all behavioural ratings excluding emotional category rating and action category 
rating or (2) only the six behavioural ratings that represented kinematic or postural aspects of the movement 
(i.e. excluding emotional category, action category, emotional intensity, valence, and familiarity ratings). The 
first model gave a classification accuracy of 78% (angry = 73%, happy = 68%, neutral = 85%, fear = 87%; see 
Fig. SR5A in Supplementary Results for more details on classification accuracy by emotion) and showed that the 
ratings of forward/away, valence and emotional intensity are the most relevant descriptors for the classification 
of emotional body movements (see Fig. 7a). When using only the behavioural ratings that presented computed 
counterparts, forward-away was again the most relevant descriptor, followed by amount of movement and sym-
metry (see Fig. 7b). This second model gave the lower accuracy of 71% (angry = 64%, happy = 58%, neutral = 
76%, fear = 84%; see Fig. SR5B in Supplementary Results for more details on classification accuracy by emotion).

Figure 4. Feature importance for the classification of emotion. Two decision tree classifiers were trained and 
tested with the eight computed features as predictors and the four emotional categories as the predicted class. 
Kinematic features included velocity, acceleration and vertical movement. Postural features included limb angles, 
symmetry, shoulder ratio, surface and limb contraction. (a) Predictor relevance for the classification model where 
the postural and kinematic features were averaged over time (overall classification accuracy of 61%, with chance 
level at 25%); (b) Predictor relevance for the classification model where the postural and kinematic features kept 
the temporal information (overall classification accuracy of 84%, with chance level at 25%).
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comparison between computational and perceived body features. This study also aimed at inves-
tigating whether perceptual (dis)similarities in kinematic and postural attributes across videos could be predicted 
by corresponding (dis)similarities at the computational level. To investigate this relationship, each of the percep-
tual RDMs was correlated to every computed feature RDM (Fig. 8; see Table SR4 in Supplementary Results for 

Figure 5. Representational dissimilarity matrices of the behavioural ratings. The RDMs represent pairwise 
comparisons between the 56 stimuli with regard to the each of the behavioural ratings (see Supplementary 
Materials for more information). The dissimilarity measure reflects Euclidean distance, with blue indicating 
strong similarity and yellow strong dissimilarity. Colour lines in the upper left corner indicate the organization 
of the RDMs with respect to the emotional category (anger: red; happiness: yellow; neutral: green; fear: purple) 
of the video stimuli.

Figure 6. Correlation between representational dissimilarity matrices of the different behavioural ratings. 
The RDM represents the level of (dis)similarity between each of the behavioural-rating matrices (see Fig. 5). 
Distances are indicated in 1-Spearman’s correlation values, with blue indicating strong similarity and yellow 
strong dissimilarity. Asterisks below the diagonal indicate significant correlations after Bonferroni correction 
(αbonf = 0.05/12, with 12 comparisons per behavioural rating; see Table SR3 in Supplementary Results for 
correlation and p-values).
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correlation and p-values). With regard to the behavioural assessments (see previous section), the matrices show-
ing the strongest positive correlation to emotion categories belonged to emotional ratings, action categories and 
forward/away. In the case of the computed features, the strongest positive correlations to emotion categories were 
found for postural features such as symmetry, limb angles and shoulder ratio (see Fig. 3).

The behavioural task was designed such that the ratings would reflect common usage and still correspond 
to some of the computed features (see Fig. 8, where these correspondences are indicated as red squares). When 
evaluating the actual correlations between the behavioural and computed attributes at the RDM level, some of 
the behavioural ratings were indeed correlated the highest to their computational counterpart, although not in all 
cases. The behavioural rating of symmetry indeed showed the highest correlation with the computed symmetry. 
However, the behavioural rating of contraction (which conceptually is related to the computation features shoul-
der ratio, surface and limb contraction) correlated highest with symmetry. The ratings of amount of movement, 
fast movement and vertical movement, which are conceptually related to computed velocity, acceleration and 
vertical movement, respectively, were all correlated significantly between each other. However, the behavioural 
rating of amount of movement was also highly correlated with symmetry, whereas fast movement correlated the 
strongest with velocity. Also, the rating of vertical movement was actually more strongly correlated to velocity 
than its computed counterpart.

Figure 7. Behavioural rating importance for the classification of emotion. (a) Predictor relevance for the 
classification model where the ratings of postural (i.e. contraction and symmetry), kinematic (i.e. amount of 
movement, fast movement, vertical movement and forward/away) and emotional (i.e. emotional intention, 
valence and familiarity) traits were included (overall classification accuracy of 78%, with chance level at 25%); 
(b) Predictor relevance for the classification model where only postural and kinematic ratings were included 
(overall classification accuracy of 71%, with chance level at 25%).

Figure 8. Average Spearman’s rank correlation between the behavioural-rating RDMs and the RDMs of the 
computed features. Distances are indicated in 1-Spearman’s correlation values, with blue indicating strong 
similarity and yellow strong dissimilarity between behavioural and computed features. Asterisks and rhombi 
below the diagonal indicate significant correlations after Bonferroni correction and correlations that presented 
significant uncorrected p-values, respectively (αbonf = 0.05/12, with 12 comparisons per behavioural rating; see 
Table SR4 in Supplementary Results). Red boxes indicate the correspondence between computed features and 
behavioural ratings.
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Discussion
This study used an innovative approach to investigate the role of kinematic and postural information in 
whole-body movement perception. Quantitative features of posture and movement derived from the position 
of the actors’ main joints were related to emotion categories as well as to behavioural ratings of feature descrip-
tors. Overall, postural rather than kinematic features seemed to discriminate better between different emotional 
body movements, both for the computed features as well as for the behavioural ratings. Among the postural 
descriptors, limb angles and symmetry appeared to be the most important cues. Moreover, adding time-related 
information to the computed features significantly improved the classification accuracy as well as changed the 
contribution of specific features in emotion classification. Finally, the perceived directionality of the movement 
(i.e. towards or away from the observer) was found to be critical for the recognition of fear and anger.

computational features. Our first RSA result indicates that, overall, postural and not kinematic computa-
tional features differentiated best between emotional categories (see Fig. 1). This finding was further supported by 
the correlation analyses between emotion and feature RDMs and the decision tree classifiers, where the postural 
features of limb angles and symmetry correlated best with emotional category (see Fig. 3) and were the two most 
important features for the classification of emotion (see Fig. 4a). These findings are in agreement with previous 
literature suggesting that postural cues are the critical features for the discrimination of emotion while motion 
cues only provide additional information used to solve occasional ambiguity12,22–24. For example, Atkinson and 
colleagues (2007) found that although movement cues were sufficient for affective recognition, the disruption of 
form information severely impaired the recognition performance. More support to this hypothesis comes from 
the neuropsychological study by McLeod (1996). In this study, a brain-damaged patient was still able to detect 
human actions using solely form cues from motion despite presenting a deficit in perceiving moving stimuli. It 
has also been found that biological motion-selective areas are more sensitive to spatial than temporal scrambling 
of PLD configurations25. Our finding, thus, underscores that postural rather than kinematic features play a more 
important role in the mechanism of decoding emotion from body movements.

Interestingly, the relevance of postural descriptors over kinematic ones was not only observed when removing 
the time information of the movement (i.e. averaging feature values over time) but even when preserving this 
information (see Fig. SR6 in Supplementary Results). The classification accuracy was also higher for the model 
whose feature descriptors preserved the time information, although using time-averaged features still provided 
above-chance classification performance. This suggests that time information may not be strictly necessary to 
distinguish between emotions, but provides additional information that can be used to solve difficult cases23. 
This finding also concurs with the importance of form over motion information in the classification of emotion 
found in previous literature (for a review see ref. 6). Yet, the way in which these features were computed seems to 
be critical in determining the relevance of some attributes over others. Without the time information, limb angles, 
symmetry and the vertical displacement of the joints were the most relevant features for emotion classification. 
Keeping the time information showed that limb angles still appeared as the most relevant predictor, but together 
with shoulder ratio and limb contraction.

Previous studies have also shown that different body expressions are best described by different contributions 
of postural and kinematic features3,4. For example, it has been revealed that postural cues have a stronger influ-
ence compared to dynamic cues in anger26 and fear expressions12,27 than for happiness or sadness. In line with this 
finding, we found that limb angles and limb contraction are relevant in differentiating fear from other expressive 
movements (see Fig. 1 and Fig. 2). The amount of vertical displacement seems, however, important in discerning 
fear from anger. Interestingly, velocity, acceleration and shoulder ratio play a role in differentiating emotional 
from non-emotional body movements. These results may not be apparent from the representational similarity 
analyses in the case of velocity and acceleration. A possible explanation could be that while the former used time- 
and keypoint-averaged data, the latter only time-averaged information.

Behavioural features. Our second result concerns the behavioural features and how they relate to emotion 
categories. This provides a picture of which features may predominantly guide subjective emotion recognition, 
yet not providing a direct link. Here, the examination of participants’ perceptual judgements about kinematic as 
well as contraction and symmetry descriptors revealed a clear discrimination between neutral and the rest of the 
affective categories (see Fig. 5). Interestingly, the perceived directionality of the movement (i.e. forward/away) 
also seemed to be relevant for the classification of emotion (see Fig. 7), especially for the discrimination between 
fear and anger (see Fig. 5). This may explain the high recognition rate observed for fearful expressions, and that 
fearful expressions were rarely confused with angry ones, and vice versa (see Fig. SR4 in Supplementary Results). 
This is in line with previous literature showing that avoidance behaviour is a diagnostic feature of fear12,28, while 
approaching behaviour is for anger28. For example, Hortensius and colleagues (2016) found that the recognition 
accuracy of fearful body expressions was higher when the movement was directed away rather than towards the 
observer whereas the opposite pattern was observed for angry expressions. Interestingly, the authors reported an 
increase in the excitability of the motor cortex for angry expressions regardless of the directionality of the move-
ment, while motor cortex excitability was not affected by the directionality of fearful expressions28. These findings 
are in agreement with the idea of an evolutionary link between action and emotion for adaptive behaviour29. In 
the presence of a threatening signal, the directionality of the movement may help the observer to prepare for an 
adaptive action.

Relation between computational and behavioural features. As mentioned in previous sections, the 
distinction between different affective movements using computed kinematic features was unclear. However, par-
ticipants’ ratings on the corresponding attributes revealed a relatively clearer distinction between emotional and 
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non-emotional movements (see Fig. 5). This gap between computed and perceptual descriptors was also reflected 
in the weak correlations between their respective matrices (see Fig. 8). It could be that the approach followed to 
calculate the kinematic features does not characterize well how people process movement information for the 
distinction between different affective movements.

With regard to postural cues, more similarities were found between the computed and perceptual features. 
The clearest example was observed with symmetry. In the case of the behavioural rating of “contraction”, three 
different computed counterparts were defined: shoulder ratio, surface and limb contraction. However, the behav-
ioural rating of this attribute was closer to the representation of limb contraction and limb angles than to surface 
or shoulder ratio. As this example shows, a specific attribute can be computed in indeed multiple ways.

Body parts and the expression of emotion. It is known from previous studies that different body parts 
play different roles in the distinction between emotions4,13,30,31. For example, there is evidence of pronounced 
lateral asymmetries in the way the body conveys emotion. Specifically, it has been found that the left side of the 
body is more emotionally expressive than the right31. Similarly, some authors have shown that the movement of 
the upper body only30 or even of a single arm13,15 or hand4 may be enough to distinguish between affective states. 
In line with these findings, the current study also found that the left side of the body is more relevant for the clas-
sification of emotion (see Fig. SR3A in Supplementary Results). A more detailed investigation revealed that the 
wrists, especially the left one, are the most important body parts in the classification of affect (see Fig. SR3B in 
Supplementary Results). In view of the previous literature, these results point to a property of the emotional body 
expression rather than to an artefact of stimuli recording or analysis.

Methodological advancement, limitations and future directions. An important difficulty in stud-
ying body movement and posture is the fact that the body is a complex high-dimensional stimulus10. At present, 
there are still very few studies investigating emotion expression at the level of the whole body. Previous stud-
ies going beyond the face have often selected a body part that most significantly contributed to the distinction 
between emotions4,13,30,31. Taking a more methodological and systematic approach, other authors investigating 
affective movements, but also intention and motor control, have used data-reduction methods such as PCA32–34, 
factor analysis35–38 or blind-source separation algorithms10. Our study is the first to create a quantitative descrip-
tion of naturalistic whole-body movements using postural and kinematic features selected for their demonstrated 
importance in previous literature (for a review see ref. 6.). This approach was adopted since relevant body descrip-
tors obtained from perceptual experiments have been shown to be in good agreement with those extracted from 
data-driven approaches10. This was only possible due to the new developments in machine learning algorithms 
for person detection (e.g. OpenPose19). The selection of a body part would have reduced the dimensionality of 
the defined features, but our aim was to pioneer the investigation of how whole-body movements, rather than its 
parts, convey emotion. The definition of the core features of human movement not only allowed us to investigate 
their relation to emotional categories, but importantly to also establish the link to observers’ subjective perception 
of feature descriptors.

Nevertheless, it is important to be aware of the limitations of our findings. For instance, although the actors 
in the current study were coached to express affective expressions in a naturalistic way, futures studies could also 
explore real-life emotional expressions. Future studies may also use larger and more diverse stimulus sets with 
a wider range of affective states, also covering multimodal, contextual and cross-cultural matters. In addition, 
we tested male and female participants but the actors in our video clips were always male. The assessment of the 
inter-rater reliability revealed a high consistency across participants (see Table SR2 in Supplementary Results) and 
no significant differences between female and male participants were found for the behavioural RDMs with the 
exception of “fast movement”. These findings suggest that the unbalanced gender stimuli selection is not crucial 
for the interpretation of our findings. Nevertheless, future studies should circumvent this possible confound. 
Finally, OpenPose occasionally lead to inaccuracies in joint position estimation that had to be manually cor-
rected. These inaccuracies were most frequent when a body part was occluded. Future studies may benefit from 
other methodologies, such as the use of MoCap data, to circumvent this issue.

A next step is the further understanding of these features in relation to the different brain regions involved 
in body perception. Insights in these mechanisms will have a crucial impact on our understanding of affect and 
social interaction, but also in many areas of society, including law enforcement and security, games and enter-
tainment, education, the arts17 but, most importantly, health care6. Patients suffering from disorders of affective 
communication, such as autism and schizophrenia, will directly benefit from the application of this knowledge to 
rehabilitation programmes focused on emotional recognition and normal social functioning.

Materials and methods
participants. Thirty-two volunteers participated in the behavioural experiment, but only the data of thirty 
(mean age = 22.97; age range = 19-36; ten males; four left-handed participants, one of them male) were included 
in the analysis due to technical issues in data recording. All participants had normal or corrected-to-normal 
vision and a medical history without any psychiatric or neurological disorders. The experiment was performed in 
accordance with the Declaration of Helsinki and all procedures followed the regulations of the Ethical Committee 
at Maastricht University. All participants provided written informed consent before taking part in the experiment. 
Participants either received credit points or were reimbursed with vouchers.

Stimuli. Stimuli consisted of 56 one-second video clips (25 frames) of whole-body movements. In each video, 
a male actor expressed one out of three possible emotional body movements: happy, fearful or angry. The stimulus 
set also included neutral body actions such as coughing, pulling the nose or walking. Therefore, this experiment 
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consisted of four categories (i.e. happy, fear, anger, neutral), each of them consisting of 14 videos with seven male 
actor identities.

The stimuli were computer-edited using Ulead, After Effects and Lightworks (EditShare). To avoid triggering 
facial perception processes, the faces of the actors were blurred with a Gaussian mask so only the information of 
the body was available. In addition, all actors were dressed in black and filmed against a green background under 
controlled lighting conditions. The video clips included in this experiment belonged to a larger stimulus set and 
were selected based on a high recognition accuracy (>80%). For more information regarding the recording and 
validation of these stimuli, see ref. 39.

pose estimation. A state-of-the-art 2D skeleton extraction library called OpenPose (v1.0.1)19 was used to 
infer each actor’s pose in the video stimuli. OpenPose uses a convolutional neural network to estimate the posi-
tion of the main joints in a total of 18 keypoints (i.e. ears, eyes, nose, neck, shoulders, elbows, hands, left and right 
part of the hip, knees and feet). Each keypoint is defined by its x and y image coordinates and a confidence value 
indicative of the algorithm’s certainty in determining the position of the joint. Subsequently, OpenPose uses 
part affinity fields to associate the keypoints in order to produce an anatomically inspired skeleton (see Fig. SM1 
Supplementary Materials). Due to the blurring of the face in our video clips, the estimation of the location of eyes 
and ears was often inaccurate. These keypoints were disregarded for further analysis giving that our purpose is the 
computation of kinematic and postural body features. However, the keypoint corresponding to the nose was kept 
for further analysis as a reference for the position of the head. Thus, three values were obtained for the remain-
ing 14 keypoints and 25 frames for each of the 56 videos of the stimulus set. In addition, visual inspection of the 
estimated joint positions was performed to assess the accuracy of the algorithm and manual corrections were 
performed when necessary with the help of Adobe Photoshop CS6’s coordinate system (v13.0, Adobe Systems 
Inc., San Jose, CA, USA).

Feature definition. To investigate the possible contribution of kinematic and postural body attributes to 
the processing and recognition of emotional movements, several quantitative features were computed giving 
their importance in previous work (for a review see ref. 6). Kinematic features included velocity, acceleration and 
vertical movement while postural features consisted of symmetry, limb angles and three different computations 
of body contraction (i.e. shoulder ratio, surface and limb contraction). These features were calculated using cus-
tom code in MATLAB (vR2017a, The MathWorks Inc., Natick, MA, USA) from the x- and y-coordinates of the 
14 keypoints and 25 frames of each of the 56 videos. Although each feature was calculated within each frame, the 
time information was later averaged (see Supplementary Materials for more information on feature definition).

experimental design, task and procedure. For this behavioural experiment, the 56 videos that com-
prised the body-movement stimulus set were presented in four runs lasting approximately 15 minutes, respec-
tively. In each run, 14 video stimuli were shown, each repeated 11 times. Each trial consisted of 100 ms fixation 
period followed by one-second video presentation. Immediately after each video presentation, participants were 
required to answer one out of 11 questions with regard to kinematic- (i.e. amount of movement, fast move-
ment, vertical movement, direction of the movement), posture- (i.e. body contraction, symmetry), emotion- (i.e. 
emotional category, intensity, familiarity, valence), and action- (i.e. action category) related aspects of the body 
movement displayed in the video (see Supplementary Materials). The questions about kinematic and postural 
aspects were closely related to the computed features, and were rated on a seven-point scale using a computer 
mouse. The emotional and action categorization questions required a forced-choice answer (see Supplementary 
Materials). The stimulus presentation order was randomized, both within and between runs, for each partici-
pant. However, the experimental questions were performed in the same order, and in consecutive trials, across 
participants for each video (i.e. first postural and kinematic ratings, followed by more emotional-related traits; 
see Supplementary Table SM1 in Supplementary Materials) to avoid triggering high-cognitive processes when 
answering feature-related questions. Therefore, for each participant 11 ratings were obtained for each of the 56 
videos. Before the actual experiment, instructions and a practice run were provided to the participants. The stim-
uli were displayed using PsychoPy2 (v1.90.0)40,41 in the centre of a computer screen (screen resolution = 1920 
×1200; screen refresh rate = 60 Hz) under controlled lighting conditions. The stimuli spanned 14.03 degrees of 
visual angle.

Assessment of inter-rater reliability. We computed the Intraclass Correlation Coefficient in SPSS to eval-
uate the level of inter-rater agreement. For this purpose, a two-way random model assessing absolute agreement 
among participants was computed per behavioural rating.

Representational similarity analysis. Relations among the computed features and behavioural ratings 
were calculated by means of representational similarity analyses20,21 in MATLAB (vR2017a, The MathWorks 
Inc., Natick, MA, USA). This approach involves the comparison of pairs of stimuli values to determine their 
representational dissimilarity. RSA characterizes this representation by means of representational dissimilarity 
matrices, which are symmetrical. The diagonal entries reflect comparisons between identical stimuli and were 
defined as zero. Each off-diagonal value indicates the dissimilarity between values associated with two different 
videos.

Computed-feature and behaviour-based RDMs. Based on the computed features for each of the 56 videos, RDMs 
were constructed by defining a dissimilarity value for all stimulus pairs in Euclidean distance (i.e. first-level fea-
ture RSA). For the emotional categories RDM, dummy variables were used such that the same emotion had zero 
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dissimilarity with itself while two different emotions presented a dissimilarity of √2. A first-level RSA was also 
performed with the behavioural ratings using Euclidean distance. For each rating, a group RDM was produced 
by averaging the RDMs of all participants. For the emotional and action ratings, dummy variables were used as in 
the case of the emotional category RDM. This analysis generated 56×56 distance matrices for both the computed 
features and the behavioural ratings. To examine the relationship between each computed feature and perceptual 
rating, Spearman’s rank correlations were carried out, resulting in second-level RDMs. Spearman’s correlations 
were also performed to investigate possible correlations between features and behavioural ratings, respectively.

Classification regression trees. In order to investigate the relative importance of the kinematic and 
postural features as well as the participant’s ratings in the classification of affective body movements, decision 
tree classifiers42 were implemented in the Machine Learning Toolbox (v11.1) from MATLAB (vR2017a, The 
MathWorks Inc., Natick, MA, USA). The classification was achieved by means of binary splits, finding a decision 
criterion that best separated the multi-class data at each node into two groups. The decision criterion for this 
binary division was based on the attribute (e.g. feature) that returned the highest information gain. In addition, 
the classification of the data was based not only on one individual tree but on the weighted majority of multiple 
decision trees43. With this bootstrap-aggregating approach, the effects of overfitting were reduced, improving 
generalization. The importance of each feature in the classification of the affective body movements was obtained 
from the tree using the full data.

Four decision trees were considered for the classification of emotion using computed and behavioural ratings, 
which differed in the predictors used: (1) the postural and kinematic features averaged over time and keypoints; 
(2) the postural and kinematic features averaged over keypoints while keeping the temporal information; (3) nine 
behavioural ratings (i.e. all behavioural ratings excluding the emotional and action category ratings) and (4) only 
the six behavioural ratings that represented kinematic or postural aspects of the body movement (i.e. excluding 
the emotional and action category ratings as well as the ratings of emotional intensity, valence and familiarity). 
These different sets of descriptors were used as input for each decision tree classifier, respectively.

In addition, two more decision trees were performed to investigate whether a given body part most signifi-
cantly contributed to the distinction between emotions. Specifically, the first tree examined whether there were 
lateral asymmetries in the way the body expressed affect. This tree used as predictors the average value of the all 
the keypoint positions at the centre (i.e. nose and neck), at the left (i.e. left shoulder, elbow, wrist, hip, knee and 
ankle) and right side of the body (i.e. right shoulder, elbow, wrist, hip, knee and ankle), respectively, of each video. 
The second tree used fourteen descriptors representing the average keypoint location of the fourteen body joints, 
for all the videos.

One-way repeated-measures ANOVA. A one-way repeated-measures ANOVA was conducted in SPSS 
for each feature to investigate possible differences between emotional categories. Each ANOVA was, therefore, 
constituted of a four-level factor Emotion (i.e. Anger, Happiness, Neutral and Fear) and used as input the feature’s 
averaged values of each video. In the cases where sphericity was violated, Greenhouse-Geisser correction was 
applied.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 4 December 2019; Accepted: 18 March 2020;
Published: xx xx xxxx

References
 1. de Gelder, B. et al. Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and 

bodily expressions. Neurosci. Biobehav. Rev. 34, 513–527 (2010).
 2. de Gelder, B. Towards the neurobiology of emotional body language. Nat. Rev. Neurosci. 7, 242–249 (2006).
 3. De Meijer, M. The contribution of general features of body movement to the attribution of emotions. J. Nonverbal Behav. 13, 247–268 

(1989).
 4. Wallbott, H. G. Bodily expression of emotion. Eur. J. Soc. Psychol. 28, 879–896 (1998).
 5. Coulson, M. Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. J. Nonverbal 

Behav. 28, 117–139 (2004).
 6. Kleinsmith, A. & Bianchi-Berthouze, N. Affective body expression perception and recognition: A survey. IEEE Trans. Affect. 

Comput. 4, 15–33 (2012).
 7. Niewiadomski, R. et al. Low-intrusive recognition of expressive movement qualities. Proceedings of the 19th ACM International 

Conference on Multimodal Interaction, 230-237 (2017).
 8. Patwardhan, A. Three-Dimensional, Kinematic, Human Behavioral Pattern-Based Features for Multimodal Emotion Recognition. 

Multimodal technol. interact. 1, 19 (2017).
 9. Piana, S., Stagliano, A., Odone, F., Verri, A. & Camurri, A. Real-time automatic emotion recognition from body gestures. arXiv 

preprint arXiv:1402.5047 (2014).
 10. Roether, C. L., Omlor, L., Christensen, A. & Giese, M. A. Critical features for the perception of emotion from gait. J. Vis. 9, 15–15 

(2009).
 11. Vaessen, M. J., Abassi, E., Mancini, M., Camurri, A. & de Gelder, B. Computational feature analysis of body movements reveals 

hierarchical brain organization. Cerebr. Cortex 1, 10 (2018).
 12. Atkinson, A. P., Tunstall, M. L. & Dittrich, W. H. Evidence for distinct contributions of form and motion information to the 

recognition of emotions from body gestures. Cognition 104, 59–72 (2007).
 13. Pollick, F. E., Paterson, H. M., Bruderlin, A. & Sanford, A. J. Perceiving affect from arm movement. Cognition 82, B51–B61 (2001).
 14. Paterson, H. M., Pollick, F. E. & Sanford, A. J. The role of velocity in affect discrimination. Proceedings of the Annual Meeting of the 

Cognitive Science Society 23 (2001).

https://doi.org/10.1038/s41598-020-63125-1


1 2Scientific RepoRtS |         (2020) 10:6202  | https://doi.org/10.1038/s41598-020-63125-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 15. Sawada, M., Suda, K. & Ishii, M. Expression of emotions in dance: Relation between arm movement characteristics and emotion. 
Percept. Mot. Skills 97, 697–708 (2003).

 16. Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psycho. 14, 201–211 (1973).
 17. Camurri, A. et al. The dancer in the eye: towards a multi-layered computational framework of qualities in movement. Proceedings 

of the 3rd International Symposium on Movement and Computing, 6 (2016).
 18. Schindler, K., Van Gool, L. & de Gelder, B. Recognizing emotions expressed by body pose: A biologically inspired neural model. 

Neural Netw. 21, 1238–1246 (2008).
 19. Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 7291-7299 (2017).
 20. Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 

1126–1141 (2008).
 21. Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).
 22. Omlor, L. & Giese, M. A. Extraction of spatio-temporal primitives of emotional body expressions. Neurocomputing 70, 1938–1942 

(2007).
 23. Lange, J. & Lappe, M. The role of spatial and temporal information in biological motion perception. Advances in Cognitive Psychology 

3, 419 (2007).
 24. McLeod, P. Preserved and Impaired Detection of Structure From Motion by a’Motion-blind” Patient. Visual Cognition 3, 363–392 

(1996).
 25. Hirai, M. & Hiraki, K. The relative importance of spatial versus temporal structure in the perception of biological motion: an event-

related potential study. Cognition 99, B15–B29 (2006).
 26. Aronoff, J., Woike, B. A. & Hyman, L. M. Which are the stimuli in facial displays of anger and happiness? Configurational bases of 

emotion recognition. J. Pers. Soc. Psychol. 62, 1050–1066 (1992).
 27. Dittrich, W. H., Troscianko, T., Lea, S. E. & Morgan, D. Perception of emotion from dynamic point-light displays represented in 

dance. Perception 25, 727–738 (1996).
 28. Hortensius, R., De Gelder, B. & Schutter, D. J. When anger dominates the mind: Increased motor corticospinal excitability in the face 

of threat. Psychophysiology 53, 1307–1316 (2016).
 29. Darwin, C. & Prodger, P. The expression of the emotions in man and animals. (Oxford University Press, USA, 1998).
 30. Glowinski, D. et al. Towards a minimal representation of affective gestures. International Conference on Affective Computing and 

Intelligent Interaction, 498–504 (2015).
 31. Roether, C. L., Omlor, L. & Giese, M. A. Lateral asymmetry of bodily emotion expression. Curr. Biol. 18, R329–R330 (2008).
 32. Santello, M., Flanders, M. & Soechting, J. F. Patterns of hand motion during grasping and the influence of sensory guidance. J. 

Neurosci. 22, 1426–1435 (2002).
 33. Troje, N. F. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. J. Vis. 2, 2–2 (2002).
 34. Yacoob, Y. & Black, M. J. Parameterized modeling and recognition of activities. Comput. Vis. Image Und. 73, 232–247 (1999).
 35. Ivanenko, Y., Cappellini, G., Dominici, N., Poppele, R. & Lacquaniti, F. Coordination of locomotion with voluntary movements in 

humans. J. Neurosci. 25, 7238–7253 (2005).
 36. Ivanenko, Y., Poppele, R. & Lacquaniti, F. Five basic muscle activation patterns account for muscle activity during human 

locomotion. J. Physiol. 556, 267–282 (2004).
 37. Soechting, M. S. J. F. Matching object size by controlling finger span and hand shape. Somatosens. Mot. Res. 14, 203–212 (1997).
 38. Tresch, M. C., Cheung, V. C. K. & d’Avella, A. Matrix Factorization Algorithms for the Identification of Muscle Synergies: Evaluation 

on Simulated and Experimental Data Sets. J. Neurophysi. 95, 2199–2212 (2006).
 39. Kret, M., Pichon, S., Grèzes, J. & de Gelder, B. Similarities and differences in perceiving threat from dynamic faces and bodies. An 

fMRI study. NeuroImage 54, 1755–1762, https://doi.org/10.1016/j.neuroimage.2010.08.012 (2011).
 40. Peirce, J. W. PsychoPy—psychophysics software in Python. Journal of neuroscience methods 162, 8–13 (2007).
 41. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Frontiers in neuroinformatics 2, 10 (2009).
 42. Loh, W.-Y. Regression tress with unbiased variable selection and interaction detection. Stat. Sin., 361–386 (2002).
 43. Opitz, D. & Maclin, R. Popular ensemble methods: An empirical study. Journal of artificial intelligence research 11, 169–198 (1999).

Acknowledgements
This work was supported by the European Research Council (ERC) FP7-IDEAS-ERC (Grant agreement number 
295673; Emobodies), by the Future and Emerging Technologies (FET) Proactive Programme H2020-EU.1.2.2 
(Grant agreement 824160; EnTimeMent) and by the Industrial Leadership Programme H2020-EU.1.2.2 (Grant 
agreement 825079; MindSpaces). We would like to thank Caoimhe Moran for the assistance with behavioural 
data acquisition.

Author contributions
All authors contributed to the study concept and design. M.P.S. performed the data analysis under the supervision of 
M.J.V. All authors performed the interpretation of the results. M.P.S. drafted the manuscript, and M.J.V. and B.d.G.  
provided critical feedback. All authors approved the final version of the manuscript for submission.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-63125-1.
Correspondence and requests for materials should be addressed to B.d.G.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-020-63125-1
https://doi.org/10.1016/j.neuroimage.2010.08.012
https://doi.org/10.1038/s41598-020-63125-1
http://www.nature.com/reprints


13Scientific RepoRtS |         (2020) 10:6202  | https://doi.org/10.1038/s41598-020-63125-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-63125-1
http://creativecommons.org/licenses/by/4.0/

	The role of computational and subjective features in emotional body expressions
	Results
	Computational features. 
	Behavioural ratings. 
	Comparison between computational and perceived body features. 

	Discussion
	Computational features. 
	Behavioural features. 
	Relation between computational and behavioural features. 
	Body parts and the expression of emotion. 
	Methodological advancement, limitations and future directions. 

	Materials and methods
	Participants. 
	Stimuli. 
	Pose estimation. 
	Feature definition. 
	Experimental design, task and procedure. 
	Assessment of inter-rater reliability. 
	Representational similarity analysis. 
	Computed-feature and behaviour-based RDMs. 

	Classification regression trees. 
	One-way repeated-measures ANOVA. 

	Acknowledgements
	Figure 1 Representational dissimilarity matrices of the kinematic and postural features.
	Figure 2 Feature differences across emotions.
	Figure 3 Correlation between representational dissimilarity matrices of kinematic and postural features.
	Figure 4 Feature importance for the classification of emotion.
	Figure 5 Representational dissimilarity matrices of the behavioural ratings.
	Figure 6 Correlation between representational dissimilarity matrices of the different behavioural ratings.
	Figure 7 Behavioural rating importance for the classification of emotion.
	Figure 8 Average Spearman’s rank correlation between the behavioural-rating RDMs and the RDMs of the computed features.




