Huntington’s disease impairs recognition of angry and instrumental body language

Beatrice de Gelder a,b,*, Jan Van den Stock b, Ruth de Diego Balaguere c,d,e, Anne-Catherine Bachoud-Lévi c,d,f,g

a Martinos Center for Biomedical Imaging, Massachusetts General Hospital, United States
b Laboratory of Cognitive and Affective Neuroscience, Tilburg University, The Netherlands
c INSE RM U841, team 1 Neuropsychologie Interventionnelle, France
d Département d’Etudes Cognitives, École Normale Supérieure, France
e ICREA and University of Barcelona, Spain
f AP-HP, Hospital Henri Mondor, Neurology Department, France
g Université Paris XII, Faculté de Médecine, France

Received 19 February 2007; received in revised form 21 October 2007; accepted 22 October 2007
Available online 26 October 2007

Abstract

Patients with Huntington’s disease (HD) exhibit motor impairments as well as cognitive and emotional deficits. So far impairments in the ability to recognize emotional stimuli have mostly been investigated by using facial expressions and emotional voices. Other important emotional signals are provided by the whole body. To investigate the impact of motor deficits on body recognition and the relation between motor disorders and emotion perception deficits, we tested recognition of emotional body language (instrumental, angry, fearful and sad) in 19 HD patients and their matched controls with a nonverbal whole body expression matching task. Results indicate that HD patients are impaired in recognizing both instrumental and angry whole body postures. Furthermore, the body language perception deficits are correlated with measures of motor deficit. Taken together the results suggest a close relationship between emotion recognition (specifically anger) and motor abilities.

Keywords: Emotion; Striatum; Action representation

1. Introduction

Huntington’s disease (HD) attacks primarily basal ganglia structures (mostly caudate nucleus and putamen) leading to severe motor deficits (Vonsattel et al., 1985). At the same time HD is accompanied by deficits in recognizing emotional expressions, particularly facial expressions of disgust (Sprengelmeyer et al., 1996; Wang, Hoosain, Yang, Meng, & Wang, 2003).

However, in natural circumstances facial expressions are rarely seen in isolation, but occur in the context of expressions by the whole body. Our ability to perceive these emotional body expressions and their representation in the brain is now becoming an important research topic (de Gelder, 2006), and exploring how HD patients recognize emotional body language may significantly contribute to novel insights. In previous studies with neurologically intact observers, we used fMRI to clarify how the brain recognizes happiness or fear expressed by a whole body (de Gelder, Snyder, Greve, Gerard, & Hadjikhani, 2004; Grezes, Pichon, & de Gelder, 2007). Our results indicate that observing fearful body expressions produces increased activity in brain areas associated with perception of emotional faces, but also in areas involved in representation of action and movement, including caudate nucleus and putamen. Caudate nucleus and putamen are known for their involvement in motor tasks but have also been associated with motivational and emotional task components (Bhatia & Marsden, 1994; Griliner, Hellgren, Menard, Saitoh, & Wikstrom, 2005; Kampe, Frith, Dolan, & Frith, 2001). Therefore, we conjectured that HD is also associated with a deficit in recognizing emotions expressed by the
whole body. However, since our pilot data indicated that static bodily expressions of disgust are difficult to distinguish from fear (both postures consisting in moving backwards and putting hand palms forward), we did not include disgust.

2. Methods

2.1. Participants

Nineteen HD patients (10 early HD at stage I and nine at stage II, using the classification based on the total functional capacity scale (Shoulson, 1981)) and 19 control subjects participated. HD patients were recruited from an out-clinic follow-up program within the framework of interventional therapy approved by the ethical committee of the Henri Mondor Hospital. They had no previous neurological or psychiatric history and their HD diagnosis was genetically confirmed. All subjects gave informed consent. Patients were evaluated using the Mattis dementia rating scale (MDRS) (Mattis, 1976), and the United Huntington’s disease rating scale of which the cognitive part contains the Stroop test, the verbal fluency task and symbol digit test. All patients were administered by the same rater. Atrophy of the caudate was assessed in 11 patients with MRI by calculating an adjusted bicaudate ratio, which took cortical atrophy into account (the minimal distance between the caudate indentations of the frontal horns divided by the width of the brain along the same line multiplied by 100). We opted for this adjustment since there are now several studies showing rather widespread cortical pathology in HD gene carriers (Kassubek et al., 2004a; Kassubek, Gaus, & Landwehrmeyer, 2004b; Thieben et al., 2002).

Control subjects were healthy volunteers with normal or corrected to normal vision and no previous neurological history. They were matched on age, sex, and years of education, (Cardebat, Doyon, Puel, Goulet, & Joanette, 1990); §

Bicaudate ratio’s* 20.7 (4.3) <10 #

Control subjects were healthy volunteers with normal or corrected to normal vision and no previous neurological history. They were matched on age, sex, and years of education, (Cardebat, Doyon, Puel, Goulet, & Joanette, 1990);

Mean accuracy scores for the two groups, separated by expression, are displayed in Fig. 1C. We carried out a repeated measures ANOVA with expression (four levels: instrumental, anger, fear, and sadness) as within-subjects variable and group (two levels: HD and controls) as between-subjects variable. This revealed significant effects of type of expression, F(3, 108) = 23.54, p < 0.001; group, F(1, 36) = 22.25, p < 0.001; and a significant interaction, F(3, 108) = 3.77, p = 0.013. To follow up on the interaction effect, we performed for every expression Bonferroni corrected t tests between both groups. This showed significant differences between the groups on the instrumental and angry expressions, t(36) = 4.73, p < 0.001. In order to explore differences between stage 1 and stage 2 HD, we performed a post hoc repeated measures ANOVA on the data of the patient group with expression (four levels) as within-subjects variable and stage (two levels) as between-subjects variable. This showed no main effect of group or interaction with expression.

To investigate a possible relationship between whole body recognition abilities on the one hand and behavioral and neu-
rostructural deficits on the other hand, we performed partial correlation analyses, controlling for scores on the MDRS in order to correct for effects due to general cognitive decline.

Table 2 shows significant correlations between general assessment measures and experimental data. Partial correlations between bicaudate ratio and experimental data were not significant for any bodily expression. Since the UHDRS motor consists of a number of subscales, we performed an exploratory correlation analysis at the level of different components of the UHDRS motor, according to Shannon (Shannon, Raman, & Leurgans, 1999) namely chorea, dystonia, oculo-motor dysfunction, and motor dysfunction. This revealed a significant correlation between the motor dysfunction component and recognition of angry body postures, $r = -0.575, p = 0.016$. The correlation between motor dysfunction and recognition of instrumental body postures was marginally significant, $r = -0.476, p = 0.053$. When confined to the subjects who underwent both bicaudate and UHDRS measurements ($N = 9$), both correlations remained stable, but at a lower significance level ($r = -0.712, p = 0.048$ and $r = -0.643, p = 0.085$, respectively). Motor dysfunction takes into account gait disturbance, axial disorders, bradykinesia, rigidity, postural reflexes, and gesture disabilities.

Correlations between bicaudate ratio and MDRS, $r = -0.737, p = 0.004$ and between bicaudate ratio and the UHDRS motor dysfunction component, $r = 0.558, p = 0.047$ were also significant.

4. Discussion

The major finding of this study concerns the deficit of HD patients in recognizing instrumental and angry whole body postures. Recognition of meaningful non-emotional actions was not investigated previously, yet reports in the literature indicate that action related deficits in HD have been observed with different tasks in other settings (Aron, Sahakian, & Robbins, 2003). The present data provide evidence that action related abilities are important for recognition of instrumental actions and bodily expressions of anger. The action component at stake in recognition of whole body expressions of sadness is considerably less important. We conjecture that this is due to the fact that this emotion is typically associated with relaxation and loss of muscle tonus. Similarly, recognition of whole body expressions of fear also implies a reduced action component as fear cannot only lead to flight but is equally associated with freezing of the whole body (LeDoux, 1996). So the observed deficits in recognizing instrumental body actions and bodily expressions of anger are compatible with the idea that the motor deficit of HD patients impairs their ability for action recognition. On the basis of this, a relationship between the UHDRS motor score and experimental data was expected. This is in fact the case. Corrected for general cognitive decline, HD patients were more impaired in recognizing the angry and the instrumental body expressions if their motor symptoms were more severe. The difficulties in perceiving body emotions were not related to abnormal movements like chorea or dystonia but to features that better capture...
the body posture and the abilities to perform gestures. This suggests a link between perception and production of body gestures that needs to be further investigated. In view of our previous results that caudate nucleus activity was observed in the contrast between “fearful” and “instrumental” expressions of the body (de Gelder et al., 2004) it is surprising that neurodegeneration of the caudate nucleus in these HD patients is not reflected in impaired fear processing. But at present we have no data available directly comparing fear and anger expressions which would allow us to estimate the relative involvement of caudate nucleus in fear vs. anger action perception. This issue clearly needs further investigations.

Research over the last decade has clearly indicated that recognition of instrumental actions involves some of the same brain areas that are involved in performance of that action by the observer himself. The importance of motor areas for action recognition is illustrated by the research on mirror neurons by Rizzolatti and co-workers (di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Grèzes & Decety, 2002; Rizzolatti & Craighero, 2004). Thus the observed impairment in recognition of instrumental actions evokes the concept of motor resonance at the center of motor cognition abilities, which are implemented in premotor cortex, parietal cortex and superior temporal sulcus (STS). Degeneration of the motor areas in HD, predominantly striatum and its connections to parietal and pre-motor cortex and STS is consistent with the importance of action representation for intact recognition of whole body postures. The areas involved in spontaneous facial expressions (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate, insula and amygdala) connect with the motor system via the basal ganglia (Alexander & Crutcher, 1990; Damasio, 1999) and this network may constitute an important part of a dedicated mechanism for visuomotor emotion perception.

Correlations between structural and functional cerebral changes and cognitive abilities have been reported in HD, although not consistently (see Montoya, Price, Menear, & Lepage, 2006, for a review). We were unable to find a correlation between our structural anatomical index (adjusted bicaudate ratio) and recognition of body postures. It should be stated that we preferred to include cortical pathology in our anatomical index, in view of recent reports about rather widespread cortical pathology already in preclinical HD (Kassubek et al., 2004a, 2004b; Thieben et al., 2002). However, incorporating cortical atrophy may rule out any kind of specific relationship between decreased volume of the striatum on the one hand and behavioral data on the other hand.

A question for future research concerns the relationship between recognition of emotional faces and bodies. Recently, selective deficits in recognition of angry faces have been reported in patients with damage to the ventral striatum (Calder, Keane, & Manes, 2004). Furthermore, the disgust recognition deficit in HD has also been extended from facial expressions to scenes, odors, vocal expressions and declarative knowledge (Hayes, Stevenson, & Coltheart, 2007). We did not include whole body expressions of disgust, since our pilot data indicated they were very hard to recognize in static stimuli once the facial information is completely blurred.

Finally, in view of the relation we observed between emotion recognition deficits (specifically anger) and motor abilities, an interesting question is whether the same pattern of deficits observed here will also be found when we use dynamic stimuli. We are currently investigating this issue.

Acknowledgements

We are grateful to all the participants, in particular the HD patients for their cooperation and A. Rialland and G. Dolbeau for help in patient data collection. Research was partly funded by HFSP (Human Frontiers Science Program), NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek) and European Commission (COBOL) grants.

References

