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In daily life, we perceive a person’s facial reaction as part of the natural environment surrounding it. Because most studies have
investigated how facial expressions are recognized by using isolated faces, it is unclear what role the context plays. Although it
has been observed that the N170 for facial expressions is modulated by the emotional context, it was not clear whether
individuals use context information on this stage of processing to discriminate between facial expressions. The aim of the
present study was to investigate how the early stages of face processing are affected by emotional scenes when explicit
categorizations of fearful and happy facial expressions are made. Emotion effects were found for the N170, with larger ampli-
tudes for faces in fearful scenes as compared to faces in happy and neutral scenes. Critically, N170 amplitudes were significantly
increased for fearful faces in fearful scenes as compared to fearful faces in happy scenes and expressed in left-occipito-temporal
scalp topography differences. Our results show that the information provided by the facial expression is combined with the scene
context during the early stages of face processing.
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INTRODUCTION
The recognition of facial expressions has traditionally been

studied by using isolated faces (Ekman, 1992; Adolphs,

2002). However, facial expressions can be rather ambiguous

when viewed in isolation. This ambiguity may be resolved if

the accompanying context is known (de Gelder et al., 2006;

Barrett et al., 2007). In comparison to the study of object

perception (Palmer, 1975; Bar, 2004; Davenport and Potter,

2004), there have only been a few behavioral studies that

investigated the question how contexts may influence face

processing. Facial expressions of fear tend to be perceived

more frequently as expressing anger when subjects had

heard a story about an anger provoking situation in advance

(e.g. about people who were rejected in a restaurant) (Carroll

and Russell, 1996). Facial expressions that were viewed in

the context of emotional scenes were categorized faster in

congruent visual scenes (e.g. faster recognition of a face con-

veying disgust in front of a garbage area) than in incongru-

ent scenes (Righart and de Gelder, 2008). fMRI studies have

also shown that facial expressions are interpreted differently

given the context information that is available (Kim et al.,

2004; Mobbs et al., 2006).

Behavioral and fMRI studies are not able to show at what

stage of processsing emotional contexts affect face recogni-

tion. This may relate to an early stage of encoding, but it may

also relate to a later stage of semantic associations that are

made between face and context. Because of the time-

sensitivity of event-related potentials (ERPs), it is possible

to investigate how contexts affect different stages of face

processing. The N170 is an ERP component that has been

related to face encoding (Bentin et al., 1996; George et al.,

1996; Itier and Taylor, 2004). The N170 occurs at around

170 ms after stimulus onset and has a maximal negative peak

on occipito-temporal sites.

Although some studies have observed that the N170 is

insensitive to facial expressions (Eimer and Holmes, 2002;

Holmes et al., 2003), other studies have shown that the N170

amplitude is modified by facial expressions of emotion

(Batty and Taylor, 2003), especially for fearful expressions

(Batty and Taylor, 2003; Stekelenburg and de Gelder, 2004;

Caharel et al., 2005; Righart and de Gelder, 2006; Williams

et al., 2006). This suggests that emotional information may

affect early stages of face encoding.

Another ERP component, the P1, with a positive deflec-

tion occurring at occipital sites at around 100 ms after stim-

ulus onset, has also been related to face processing. Most

studies have centred on this component because of its rela-

tion to spatial attention and physical features (Hillyard and

Anllo-Vento, 1998). However, recent studies have found that

the P1 amplitude is larger for faces than for nonface objects

(Itier and Taylor, 2004; Herrmann et al., 2005), and that

facial expressions affect the P1 amplitude as well (Batty

and Taylor, 2003; Eger et al., 2003). The P1 may reflect a

stage of face detection, and precedes the N170 that may

reflect a stage of configural processing (Itier and Taylor,

2004). This time-course is consistent with earlier suggestions

that global processing of faces occurs at around 117 ms,
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while fine processing of facial identity and expressions may

occur at around 165 ms (Sugase et al., 1999).

An important question is how emotional contexts in

which faces are perceived affect the aforementioned P1 and

N170 components. In our previous study it was found that

the N170 amplitude was larger when the face appeared in a

fearful scene, especially when the face expressed fear (Righart

and de Gelder, 2006). This effect was not found for the P1,

though effects have been observed on this component for

scenes only (Smith et al., 2003; Carretie et al., 2004;

Righart and de Gelder, 2006), and for facial expressions in

interaction with bodily expressions (Meeren et al., 2005).

While previous studies have reported that the N170

elicited by facial expressions is modulated by the emotional

context, it is not yet clear whether individuals use context

information in this stage when the task requires them to

attend to the face and to discriminate explicitly between

facial expressions. We hypothesized that the N170 com-

ponent will still be affected by emotion regardless of the

changed task conditions (Caharel et al., 2005).

In addition, it was not clear from our previous study how

facial expressions of fear are processed compared with other

facial expressions (e.g. happiness) as a function of the emo-

tional context. In the present study, we investigated whether

explicit categorization of facial expressions (fear, happiness)

affects the P1 and the N170 for faces. As the discrimination

of fine expressions may be associated with later processing

stages than the P1 (compare with Sugase et al., 1999), and

especially facial expressions of fear affect the N170

amplitude, we hypothesized that the N170 amplitude

would be larger for fearful faces in fearful scenes as

compared to happy and neutral scenes.

MATERIALS AND METHODS
Subjects
Eighteen participants (12 male) ranging from 21 to 50 years

participated in the experiment (13 right handed). One

participant was removed because of visual problems

(glaucoma). The remaining participants had normal or cor-

rected-to-normal vision. None of them reported a history

of neurological or psychiatric diseases. All participants had

given informed consent and were paid E20 for participation.

The study was performed in accordance with the ethical

standards of the Declaration of Helsinki.

Stimuli
Stimuli consisted of faces that were centrally overlaid on

pictures of natural scenes (Figure 1). Stimuli were color

pictures (24 male and female) of facial expressions of fear

and happiness from the Karolinska Directed Emotional

Faces set (Lundqvist et al., 1998) and color pictures of

natural scenes selected from the International Affective

Picture System (IAPS) (Lang et al., 1999, p. 7560, 9622,

9911, 9920), which were complemented with images from

the web to have for each category an equal number of scenes

(Figure 1). Contents were validated for emotions of fear,

happiness or neutrality and arousal (seven-point scale,

Fearful (4.84) Happy (4.25) Neutral (2.00)

• Beach (4.65) • Highway (2.60)

• Fire (5.45)
• Carcrash (4.08)

• Candles (4.98) • House (1.63)

• Flood (4.78) • Firework (4.45) • Mill (2.00)

• Planecrash (5.38) • Palmtrees (4.28) • Room (1.90)

• Storm (4.43) • Party (3.53) • Street (2.23)

• Tornado (4.93) • Swimmingpool (3.60) • Train (1.65)

A B

C

Fig. 1 Facial expressions of fear and happiness were combined with context scenes conveying fear, happiness or a neutral situation. (A). An example of a face-context compound
showing a facial expression of fear and a carcrash and (B) the same facial expression shown in a scrambled version of the carcrash that was used as a control stimulus for the
effects of color. (C). Six context categories of stimuli were selected, each category containing four different stimuli (i.e. in total 24 for each emotion) that were validated.
Average arousal ratings of validation are shown in parentheses. Participants rated the stimuli on a scale from 1–7.
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from 1¼ unaffected to 7¼ extremely aroused) by a different

group of participants (N¼ 10) using a collection of 401

picture stimuli. In total, 24 scene stimuli were selected for

each emotion category (Figure 1). For the final set that was

used in the experiment, arousal rates for fearful (4.84) and

happy scenes (4.24) were significantly higher than neutral

scenes (2.00) (both P < 0.001 but P > 0.05 for fearful–happy).

On average, the intended label for happy scenes was chosen

for 75% of the trials, for fearful scenes for 64% of the trials

and for neutral scenes for 87% of the trials.

In order to control for low-level features (e.g. color),

all scene pictures were scrambled by randomizing the posi-

tion of pixels across the image (blocks of 8� 8 pixels were

randomized across the image measuring 768� 572 pixels

width and height), which makes the pictures meaningless.

The resulting pictures were inspected carefully for residual

features that could cue recognition.

The height and width of the facial images was

7.9 cm� 5.9 cm (5.68� 4.28) and for context images

24.5 cm� 32 cm, respectively (17.48� 22.68). Faces did not

occlude critical information in the context picture.

Design and procedure
Participants were seated in a dimly illuminated and an

electrically shielded cabin with a monitor positioned at

80 cm distance. Participants were instructed and familiarized

with the experiment by a practice session.

The experiment was run in 16 blocks each containing

72 trials of face-context compounds, 8 blocks of faces with

intact context scenes and 8 blocks of faces with scrambled

scenes. Blocks presenting intact and scrambled images alter-

nated (with order randomized across participants). Facial

expressions (fear, happy) were paired with a scene of each

category (fear, happy, neutral) to have a balanced factorial

design. Categories of emotional scenes appeared randomly

throughout each block, so that each condition was presented

in each block. Altogether, intact and scrambled blocks

amounted to 12 conditions of each 96 trials.

The face-context compounds were presented for 200 ms

and were preceded by a fixation cross. Participants per-

formed a two-alternative forced choice task in which they

categorized facial expression as happy or fearful. Responses

were recorded from stimulus onset. No feedback was given.

They were instructed to respond as accurately and fast as

possible. Response buttons were counterbalanced across par-

ticipants. The intertrial interval was randomized between

1200 and 1600 ms.

After the main experiment, participants received a valida-

tion task in which they judged the arousability of the scenes

and categorized them by emotion. In contrast to the stimu-

lus validation, arousal was measured on a five-point scale

now because of response box limitations in the EEG experi-

ment (five-point scale from 1¼ calm to 5¼ extremely arous-

ing). Emotional categorization was measured by using three

options (fear, happy, neutral).

EEG recording
EEG was recorded from 49 active Ag–AgCl electrodes

(BioSemi Active2) mounted in an elastic cap referenced

to an additional active electrode (Common Mode Sense).

EEG was bandpass filtered (0.1–30 Hz, 24 dB/Octave). The

sampling rate was 512 Hz. All electrodes were referenced

offline to an average reference. Horizontal electrooculogra-

phies (hEOG) and vertical electrooculographies (vEOG)

were recorded. The raw data were segmented into epochs

from 200 ms before and 1000 ms after stimulus onset. The

data were baseline corrected to the first 200 ms.

EEG was EOG corrected by using the algorithm of Gratton

et al. (1983). Epochs exceeding 100 mV amplitude difference

at any channel were removed from analyses. No differences

were observed across conditions for facial expressions and

emotional scenes. On average 87.5 trials (range across con-

ditions: 86.8–88.5) were left for faces in intact scenes and

85.1 trials (84.4–85.4) were left for faces in scrambled scenes

after removal of the artifacts. After removal of trials contain-

ing inaccurate responses or responses below 200 ms, ERPs

were averaged for conditions of facial expressions of fear

in intact fearful, happy and neutral scenes, and for happy

facial expressions in the same context categories. Similarly,

averages were computed for scrambled blocks, resulting in

a total of 12 conditions.

Electrode selection for P1 and N170 analyses was based on

previous studies. Based on grand average ERP inspection,

peak detection windows for P1 and N170 were measured

using time-windows of 60–140 ms and 100–220 ms, respec-

tively. Peak latencies and amplitudes of P1 were analyzed at

occipital sites (O1/2) and occipito-temporal sites (PO3/4,

PO7/8) as the maximal positive peak amplitude. The N170

was analyzed on occipito-temporal sites (P5/6, P7/8 and

PO7/8) as the maximal negative peak amplitude.

Data analyses

Behavioral analyses were performed for error rate (percen-

tage of incorrect responses) and RTs (average response-times

for correct responded trials). RT data were inspected for

outliers for each participant. RTs > 2.5 SD from the mean

of each condition were removed from analyses. Using these

criteria, 2.6% of the trials were removed. Main and interac-

tion effects were analyzed by using repeated measures

ANOVA containing the factors Image (intact, scrambled),

Facial expression (fear, happy) and Scene (fear, happy, neu-

tral). Planned comparisons were performed (Howell, 2002)

to test our specific hypothesis that fearful faces are faster

recognized in fearful scenes (congruent) as compared to

happy scenes (incongruent), and that happy faces are faster

recognized in happy scenes (congruent) as compared to

fearful scenes (incongruent). (�¼ 0.05, one-tailed t-test,

directional hypotheses).

P1 and N170 latencies and amplitudes were analyzed

by using repeated measures ANOVA containing the within

subject factors image (intact, scrambled), facial expression
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(fear, happy), scene (fear, happy, neutral), hemisphere (left,

right) and electrode position. Emphasis was put on the

analysis of the factors facial expression and scene. Because

of the specific hypothesis, planned comparisons were

performed between facial expressions as a function of the

emotional context.

Scalp topographic analyses and differences across the

topographies for emotional scenes were analyzed by using

repeated measures ANOVA. Mean amplitudes around the

N170/Vertex Positive Potential (VPP) (140–160 ms) were

calculated and differences across topographies were tested

by t-tests on each electrode site (Rousselet et al., 2004).

Amplitudes were vector normalized according to the

method employed by McCarthy and Wood (1985).

P-values were corrected by Greenhouse–Geisser epsilon

when appropriate. Statistics are indicated with original

degrees of freedom (Picton et al., 2000).

RESULTS
Behavioral results
The average error rate across all conditions was below 5%.

Because of this low rate, no planned comparisons were

performed. The main effect for image was significant,

F(1,16)¼ 4.08, P < 0.05, in that errors were slightly increased

for faces in intact scenes (M¼ 4.4%) than scrambled scenes

(M¼ 4.0%).

The analyses for RTs showed a main effect for facial expres-

sion, F(1,16)¼ 4.07, P < 0.05) as reflected in faster RTs

to happy facial expressions (M¼ 665 ms) than fearful facial

expressions (M¼ 690 ms), which is shown in Figure 2.

A three-way interaction was observed between facial expres-

sion, scene and image, F(2,15)¼ 3.89, P < 0.05. Planned com-

parisons showed that happy faces were recognized faster

in intact happy (M¼ 667 ms) and neutral (M¼ 668 ms)

than fearful scenes (M¼ 682 ms), t(16)¼ 2.54, P < 0.05 and

t(16)¼ 2.16, P < 0.05, respectively. The differences were not

significant between happy faces in scrambled versions of

happy (M¼ 661 ms), neutral (M¼ 656 ms) and fearful

scenes (M¼ 657 ms). Neither were the differences significant

for fearful faces in intact fearful scenes (M¼ 691 ms), happy

scenes (M¼ 694 ms) and neutral scenes (M¼ 694 ms).

In the evaluation task after the main experiment, a main

effect was found for arousal, F(2,32)¼ 59.41, P < 0.001,

in that fearful (M¼ 3.81) and happy scenes (M¼ 3.45)

were rated as being more arousing than the neutral scenes

(M¼ 1.84), t(16)¼ 11.99, P < 0.001 and t(16)¼ 8.80,

P < 0.001. No effects were found for the categorization

task, F(2,32)¼ 2.22, P > 0.05. However, post-hoc t-tests

showed that the ratings for fearful and happy categories

differed significantly, t(16)¼ 2.15, P < 0.05. The intended

label for happy scenes was chosen on 87% of the trials, for

fearful scenes on 77% of the trials and for neutral scenes on

81% of the trials. Thus, these results are consistent with our

previous ratings on arousal and category.

ERP data
P1 component. The ERPs of 14 participants showed a

distinctive P1 deflection. No main effects were observed

for facial expression and scene for P1 latency and amplitude,

P > 0.05. A marginally significant three-way interaction was

found between image, electrode position and scene,

F(4,10)¼ 2.92, P¼ 0.08, which was explained by amplitudes

that were smaller for faces in intact happy (M¼ 6.18 mV)

than intact fearful (M¼ 6.97 mV) and intact neutral scenes

(M¼ 6.91 mV), but on electrode pair O1/2 only, respectively,

P < 0.01 and P < 0.05. None of the comparisons for

scrambled scenes were significant.

N170 component. The ERPs of 15 participants showed

a distinctive N170. Main effects were found for the N170

latency of facial expression, F(1,14)¼ 20.41, P < 0.001 and

scene, F(2,13)¼ 15.47, P < 0.001, but the effects were

explained by slight latency differences between happy faces

(M¼ 148 ms) and fearful faces (M¼ 149 ms) and between

neutral (M¼ 148 ms) and fearful scenes (M¼ 149 ms), and

therefore these effects are not further discussed.
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Fearful scenes
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Fig. 2 Mean response-times (ms) for fearful (A) and happy faces (B) in fearful,
happy and neutral scenes. Error bars are 1 Standard Error around the mean.
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The analyses for the N170 amplitude showed a main effect

for facial expression, F(1,14)¼ 6.36, P < 0.05, in that N170

amplitudes were more negative to facial expressions of

happiness (M¼�4.64 mV) than fear (M¼�4.25 mV).

A three-way interaction was observed between image,

electrode-position and scene, F(4,11)¼ 6.90, P < 0.05

(Figure 3). Amplitudes were more negative for faces in

intact fearful (M¼�4.51 mV) than faces in intact happy

(M¼�3.94 mV) and intact neutral scenes (M¼�4.05 mV),

P < 0.01, P < 0.05, respectively. These results were significant

on electrodes P7/8 only. It is unlikely that these effects are

based on low-level features. The differences between faces in

scrambled fearful (M¼�5.23 mV) and faces in scrambled

happy scenes (M¼�5.03 mV) obtained marginal signifi-

cance (P¼ 0.06). The differences between faces in scrambled

fearful scenes (M¼�5.23 mV) and faces in scrambled neutral

scenes (M¼�5.26 mV) were not significant.

Planned comparisons were performed on N170 peak

amplitudes for fearful and happy facial expressions

separately as a function of scene. It was found that the

N170 amplitudes were more negative for fearful facial

expressions in fearful scenes than fearful facial expressions

in happy scenes, for P7 (�4.18 mV; �3.19 mV), t(14)¼ 3.74,

P < 0.01, P8 (�4.84 mV; �4.23 mV), t(14)¼ 2.59, P < 0.05 and

compared to neutral scenes for P7 (�4.18 mV; �3.33 mV),

t(14)¼ 3.06, P < 0.01 (Figure 3). For happy facial expres-

sions, N170 amplitudes were more negative in fearful

scenes than happy facial expressions in happy scenes for

P7 (�3.90 mV; �3.52 mV), t(14)¼ 2.61, P < 0.05, and happy

facial expressions in neutral scenes for P7 (�3.90 mV;

3.39 mV), t(14)¼ 2.28, P < 0.05. The comparisons for other

electrodes on the occipito-temporal scalp are shown in

Figure 4. Importantly, the differences were obtained on

all occipito-temporal electrodes on the left hemisphere for

fearful faces in fearful scenes as compared to happy and

neutral scenes, while this was not the case for happy faces.

T-tests on all electrodes for the calculated mean amplitudes

(140–160 ms) were similar to peak analyses (Figure 4).
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Fig. 3 Grand-averaged ERPs of the N170/VPP components. N170/VPP for fearful (A) and happy faces (B) in fearful, happy and neutral scenes. The N170 is displayed for
occipito-temporal electrode sites (P7/8) and the VPP is displayed for the vertex electrode (Cz). Negative amplitudes are plotted upwards.
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Scalp topography analyses. Scalp topography analyses

were performed to examine further whether the implied

hemispheric differences for fearful facial expressions in fear-

ful scenes were reflected in topographical differences. For

the scalp topographic distribution, mean amplitudes were

calculated around the N170 peak, which occurred on

�150 ms. Figure 4 shows planned comparisons for mean

amplitudes at 140–160 ms indicating that fearful faces were

larger in fearful scenes than happy and neutral scenes on

left occipito-temporal electrodes. In addition, the central

electrodes show a positivity (associated with the VPP,

Joyce and Rossion, 2005) that is increased for fearful faces

in fearful scenes as compared to happy and neutral scenes.

The topographic interaction between a large range of

symmetrically positioned occipito-temporal electrodes

(T7/8; TP7/8; CP3/4; CP5/6; P7/8; P5/6; PO7/8; PO3/4;

O1/2) and scene was tested for facial expressions of fear

and happiness separately by repeated measures ANOVA.

A significant topography difference was found between

fearful facial expressions in intact fearful scenes as compared

to fearful facial expressions in intact happy scenes,

F(19,304)¼ 4.10, P < 0.05, but it was not different from fear-

ful facial expressions in neutral scenes, F(19,304)¼ 1.28,

P¼ 0.29. The difference between fearful facial expressions

in happy scenes and fearful facial expressions in neutral

scenes was significant neither, F(19,304)¼ 1.61, P¼ 0.18.

The comparisons across scrambled scenes were also non-

significant. For happy facial expressions, no topography

differences were found between faces that were presented

in fearful scenes compared to happy, F(19,304)¼ 1.92,

Fearful 
Context

Happy 
Context

Neutral 
Context

Fearful 
Context

Happy 
Context

Neutral 
Context

Fear - Happy 
Context

Fear - Neutral 
Context

Happy - Neutral 
Context

Topography (140−160 ms) for 
Fearful faces

Topography (140−160 ms) for 
Happy faces

Subtraction topographies

Fear - Happy 
Context

Fear - Neutral 
Context

Happy - Neutral 
Context

Subtraction topographies

T-test difference amplitudes
• P<0.05

T-test difference amplitudes
• P<0.05

Neg Pos

Fig. 4 Scalp topographies for faces in context based on a window (140-160 ms) around the peak for the N170. Upper panel left: scalp topography of fearful faces in fearful,
happy and neutral scenes show the typical central positivity of the VPP and the occipito-temporal negativities of the N170. Upper panel right: happy faces in fearful, happy and
neutral scenes. Lower panel left: scalp topographies based on difference waves show the prominent left occipito-temporal N170 and central VPP response to faces in fearful
scenes, but neither for fearful faces in happy or neutral scenes, nor for happy faces in any of the scenes (lower panel right). Black dots in electrode-map depict sites on which
difference is significant (t-test, P < 0.05, uncorrected).
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P¼ 0.13, and neutral scenes, F(19,304)¼ 0.51, P¼ 0.74, and

nor between happy and neutral scenes, F(19,304)¼ 0.93,

P¼ 0.44.

DISCUSSION

We showed that affective information provided by natural

scenes influences face processing. Larger N170 amplitudes

were observed for faces in fearful scenes as compared to

faces in happy and neutral scenes, which were particularly

increased for fearful faces on the left hemisphere electrodes.

Taken together, our results indicate that information from

task-irrelevant scenes is combined rapidly with the informa-

tion from facial expressions, even when the task requires

categorization of facial expressions. These results suggest

that subjects use context information on this stage of pro-

cessing when they discriminate between facial expressions.

The emotional context may facilitate this categorization pro-

cess by constraining perceptual choices (Barrett et al., 2007).

The behavioral data confirm earlier findings that context

information may influence how facial expressions are recog-

nized (Carroll and Russell, 1996; reviewed by Barrett et al.,

2007). Categorization of happy facial expressions is signifi-

cantly faster in happy than fearful scenes, whereas the faster

recognition of fearful facial expressions in fearful scenes

compared to happy scenes did not reach significance.

These behavioral data replicate our previous findings

(Righart and de Gelder, 2008), but appear to oppose the

results on the ERP data. The differences for scrambled

scenes were not significant and therefore it is unlikely that

low-level features explain these results. A novel finding in

this study is that RTs for happy faces in neutral scenes were

also faster than fearful scenes. Future studies may investigate

how recognition of facial expressions is affected by emo-

tional scenes when individuals are not constrained by choos-

ing between emotion labels (Barrett et al., 2007).

The behavioral data do not necessarily reflect the same

brain processes as measured by ERPs. Behavioral results

differ across tasks that are employed, as it has been reported

that response times are fastest to negative expressions

if participants had to detect expressions (Öhman et al.,

2001), but are slowest if participants had to discriminate

among several expressions (Calder et al., 2000). The ERP

data showed different patterns for the P1 component com-

pared to the N170 component. The P1 amplitudes were

larger to faces in fearful than happy scenes, which is consis-

tent with literature that has shown P1 effects for emotional

scenes without faces (Smith et al., 2003; Carretie et al., 2004;

Righart and de Gelder, 2006), and may relate to attentional

effects that have been reported for the P1 (Hillyard and

Anllo-Vento, 1998). However, it should be noted that the

results for faces in neutral scenes were not consistent with

this interpretation, because the amplitudes for neutral scenes

were similar to these for fearful scenes. We cannot exclude

here that low-level features may have introduced this effect

for neutral scenes (Allison et al., 1993). However, low-level

features are unlikely explaining the main results for the

N170, because these results replicate our previous data

but now by using different stimulus sets (Righart and

de Gelder, 2006).

In contrast to the P1, increased N170 amplitudes

were observed on the left hemispheric electrode sites when

fearful faces were accompanied by fearful scenes rather than

happy or neutral scenes. As fearful scenes increased the N170

amplitude for fearful faces significantly, emotions may com-

bine specifically for fear at this stage of encoding. Previous

work has already shown that the N170 amplitude is modified

by facial expressions (Batty and Taylor, 2003), especially

for fearful facial expressions (Batty and Taylor, 2003;

Stekelenburg and de Gelder, 2004; Williams et al., 2006),

and that fearful scenes increase the N170 amplitude for fear-

ful facial expressions even more (Righart and de Gelder,

2006). Although the N170 amplitude was increased for

both fearful and happy faces in fearful as compared to

happy and neutral scenes, which may relate to general effects

of arousal, specific effects were found for fearful faces on

the left hemisphere, as indicated by the scalp topographic

analyses that showed significant differences on left occipito-

temporal electrodes.

The left hemispheric effects may correspond to contextual

effects that were observed before in an fMRI study (Kim

et al., 2004). It was found that left fusiform gyrus activation

to surprised faces was increased if preceded by a negative

context (e.g. about losing money) as compared to a posi-

tive context (e.g. about winning money). We have shown

that context effects also occur when context and face are

presented simultaneously. From a psychological perspective

this is important, because it shows that emotional informa-

tion from the context and face can be combined simulta-

neously, and on an early stage of processing, which appears

to diverge from the face recognition model by Bruce and

Young (1986), in which facial expressions are extracted

after a stage of structural encoding, and in which context

information is incorporated at a relatively late semantic stage

of processing.

The N170 may (in part) be generated by the fusiform

gyrus (Pizzagalli et al., 2002). The N170 amplitude to faces

has been related to the BOLD response in the fusiform gyrus

(Iidaka et al., 2006). The time-course of the N170, and the

generation of this component in the fusiform gyrus, is con-

sistent with a feedback modulation from the amygdala.

An intracranial study has found that the amygdala may

respond differentially to facial expressions at around

120 ms (Halgren et al., 1994). Anatomical connections

have been found between the amygdala and the fusiform

gyrus (Aggleton et al., 1980), and in patients with amygdalar

sclerosis it has been shown that the amygdala is critical in

enhancing the fusiform gyrus response to facial expressions

(Vuilleumier et al., 2004).

The input from the amygdala to early visual areas may

importantly shape emotion perception (Halgren et al., 1994;
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LeDoux, 1996). Early enhanced visual responses to emo-

tional stimuli may be crucial for rapid decision making

and reactions to salient situations and other person’s reac-

tions to these situations.
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