

Poster number: M310

Multivariate analysis of affective body perception using postural and kinematic features of movement

Marta Poyo Solanas¹, Maarten Vaessen¹ & Beatrice de Gelder^{1, 2}

- ¹ Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
- ² Department of Computer Science, Faculty of Engineering, University College London, London, UK.

Introduction

When we observe someone performing an affective body movement, our brains transform this information into an understanding of the intent and the emotion expressed **[1, 2]**. However, the mechanisms underlying this ability are still largely unclear. This study aims at elucidating which low-level movement properties (i.e. kinematic and postural features) are important for the perception and classification of emotion from body movements and how these properties are represented in the different brain regions involved in body perception.

Methods & Results

Surface*

Decision tree: classification of emotion categories with the postural and kinematic features as predictors.

Shoulder ratio *

 Postural rather than kinematic features displayed a clear differentiation between emotional categories.

Limb contraction *

Classifying emotion with a decision tree revealed that limb angles, symmetry and vertical displacement are the most important features for emotional classification (accuracy = 61%, chance level = 25%).

When keeping the time information of the features for the classification of emotion, limb angles, shoulder ratio and limb contraction showed to be the most relevant ones (accuracy = 84%).

Conclusion

Postural rather than kinematic features seem to be more relevant in the classification of emotion from whole-body movements. Moreover, postural and kinematic

features activated different brain regions, indicating that these regions played a role in encoding these features. Our approach goes beyond classical methods of categorically mapping cognitive constructs to brain activation/deactivation and instead attempts to find a basis for affective body and action perception, looking for movement features and how they are encoded in the brain.

References

- [1] Giese, M. A., & Rizzolatti, G. (2015). Neural and computational mechanisms of action processing: interaction between visual and motor representations. Neuron, 88(1), 167-180.
- [2] de Gelder, B. (2006). Towards the neurobiology of emotional body language. Nature Reviews Neuroscience, 7(3), 242-249.
- [3] Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Real-time multi-person 2d pose estimation using part affinity fields. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7291-7299).
- [4] Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2, 4.

Acknowledgements

This work was supported by the European Research Council (ERC) FP7-IDEAS-ERC (Grant agreement number 295673; *Emobodies*), by the Future and Emerging Technologies (FET) Proactive Programme H2020-EU.1.2.2 (Grant agreement 824160; *EnTimeMent*) and by the Industrial Leadership Programme H2020-EU.1.2.2 (Grant agreement 825079; *MindSpaces*).

Correspondence to: Marta Povo Solanas	Dept. of Cognitive Neuroscience	Maastricht University
		P.O. Box 616
marta.poyosolanas@maastrichtuniversity.nl	T +3143 388 2483	6200 MD Maastricht, The Netherlands