

Faculty of Psychology and Neuroscience

Voxelwise encoding model reveals 2D key points like representation in extrastriate body area.

Giuseppe Marrazzo, Federico De Martino, Agustin Lage-Castellanos, Maarten Vaessen, Beatrice de Gelder

Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands.

Introduction

The extrastriate body area (EBA) (Downing et al. 2001, Peelen and Downing, 2005) is currently considered to be a ventral cortex object category area, selective for still body stimuli. Despite the current view, several studies have shown how stimulus features or body attributes are encoded in EBA.

Objective

What is less clear is the role played by EBA in bridging the gap between low-level features of body stimuli (i.e. kinematics) and the high-level semantic information conveyed by the body (i.e. emotion, action).

Therefore, understanding how whole-body postures are encoded in EBA is crucial to disentangle its role in body perception.

In this fMRI study we used fully parametrized body stimuli and we tested several encoding models in order to determine which one could best predict fMRI BOLD responses in EBA.

Methods

Stimuli: 324 images of body postures (108 unique poses from 3 viewpoints) generated using Vposer (Pavlakos et al. 2019).

Participants: 20 volunteers (9 males) right-handed.

Experimental design: Two 7T fMRI (12 experimental runs in total) mixed block/fast event-related design (localizer: block design; main experiment) fast event-related design)

Encoding models:

- kp2d: 2D key points (joints coordinates) extracted during stimulus creation.
- **kp3d**: 3D key points (joints coordinate)
- Gabor: pixel space representation.

Acknowledgments: This work was supported by ERC 2019-SyG-RELEVANCE-856495

Correspondence to:

Giuseppe Marrazzo, Department of Cognitive Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands.

g.marrazzo@maastrichtuniversity.nl www.beatricedegelder.com

- a.Example of std sampling for stimulus creation. (above) Examples of same pose from different viewpoints (below)
- b.Object category used in the localizer (block design).
- c.Main experiment following a fast event-related paradigm with one-back task to control attention

ROI definition: EBA was defined using the localizer contrast: Body> [Houses + Tools];

Models fitting: Banded ridge regression (Nunez-Elizalde et al. 2019; Dupré La Tour et al. 2022) in which the regularization parameters are learnt in crossvalidation.

Models' assessment: Pearson's correlation between predictions obtained by each model separately and left-out testing data.

Dept of Cognitive Neuroscience

T +31 43-38 81581

Results

• **Kp2d** shows higher prediction accuracy in high-level visual cortex.

ROI analysis: Analysis performed on bilateral **EBA** (defined on independent data). The average accuracies across 20 subjects reveals that kp2d outperforms kp3d and gabor in EBA. (These results have not yet been statistically assessed).

Whole-brain analysis: • Gabor model outperforms kp2d and kp3d in early occipital areas.

Left: Comparison between kp2d (yellow/red) and Gabor (cyan). Color bar represents Pearson's correlation value.

Right: Comparison between kp3d (yellow) and Gabor (cyan).

Mean of predictions' accuracies across 20 subjects in right and left EBA

References

<u>418.</u>

Maastricht University

P.O. Box 616 6200 MD Maastricht, The Netherlands

Left hemisphere

Subject-level accuracies 'distributions in Pearson's correlation value.

Conclusion

These results suggest that bodies may be represented in **EBA** as key points, namely the relative distance between the joints is driving the response. This representation is bidimensional and thus viewpoint specific.

-Downing, P. E., et al. (2001). "A cortical area selective for visual processing of the human body." <u>Science 293(5539): 2470-2473.</u>

- Peelen, M. V. and P. E. Downing (2005). "Selectivity for the human body in the fusiform gyrus." Journal of Neurophysiology 93(1): 603-608.

- Foster, C., et al. (2019). "Decoding subcategories of human bodies from both body- and face-responsive cortical regions." Neuroimage 202: 116085. - Ewbank, M. P., et al. (2011). "Changes in "Top-Down" Connectivity Underlie

Repetition Suppression in the Ventral Visual Pathway." The Journal of Neuroscience 31(15): 5635-5642.

- Poyo Solanas, M., et al. (2020). "Computation-Based Feature Representation of Body Expressions in the Human Brain." Cerebral Cortex 30(12): 6376-6390. - Chan, A. W., et al. (2010). "Cortical representations of bodies and faces are strongest in commonly experienced configurations." Nat Neurosci 13(4): 417-

-Pavlakos, G., et al. (2019). Expressive body capture: 3d hands, face, and body from a single image. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

-Nunez-Elizalde, A. O., et al. (2019). "Voxelwise encoding models with nonspherical multivariate normal priors." <u>Neuroimage 197: 482-492.</u>

-Dupré La Tour, T., Eickenberg, M., & Gallant, J. L. (2022). Feature-space selection with banded ridge regression. [bioRxiv].